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We consider the periodic scalar neutral functional differential equation
Ž .w Ž . Ž . Ž .x Ž Ž .. Ž Ž ..drdt x t y c t x t y t s yh t, x t q h t y s , x t y s , where c is con-
tinuously differentiable, h is increasing in its second argument, and both c and h
are 1-periodic in the t-variable. The two time-lags t and s are not required to be

Ž .the same. It is shown that, under certain conditions, i the set of 1-periodic
solutions is an ordered arc and each solution is convergent to a periodic solution;
Ž .ii the asymptotic and oscillatory behaviors of each solution are completely
classified in terms of the value of the first integral at the initial condition. Q 1996

Academic Press, Inc.

1. INTRODUCTION

Consider the following periodic scalar neutral functional differential
equation

d
x t y c t x t y t s g t , x t , x t y s , 1.1Ž . Ž . Ž . Ž . Ž . Ž .Ž .

dt
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where t and s are nonnegative constants, and

Ž . 1Ž . < Ž . < Ž . Ž .A c g C R; R , c t - 1, and c t q 1 s c t for all t g R;
Ž . Ž 3 .B g g C R ; R is locally Lipschitz continuous in its second and

Ž .third arguments, strictly increasing in its third argument, and g t q 1, x, y
Ž . Ž . 3s g t, x, y for t, x, y g R .

� 4 Žw x .Let r s max t , s and let C s C yr, 0 ; R be the Banach space of
w x < <continuous functions from yr, 0 into R with the norm f sC

< Ž . < Ž .sup f s , f g C. Then for each given f g C, there exists g f )yr F sF 0
Ž . w Ž ..0 and a unique continuous mapping x s x f : yr, g f ª R such that

Ž . Ž . w x Ž . Ž . Ž .x s s f s for s g yr, 0 , x t y c t x t y t is continuously differen-
Ž . w Ž ..tiable and satisfies 1.1 on 0, g f . Such a function is called the solution

Ž . w xof 1.1 through f an we refer to Hale 14 or Hale and Verduyn Lunel
w x15 for a detailed account of the fundamental existence]uniqueness
theory.

To motivate the problem we are going to investigate and to provide a
brief account of the history of the subject, let us start with the autonomous
case where c is a constant and g is independent of t:

d
x t y cx t y t s g x t , x t y s . 1.2Ž . Ž . Ž . Ž . Ž .Ž .

dt

We assume the following condition is satisfied:

Ž . Ž .C g x, x s 0 for all x g R.

Ž . Ž .Prototypes of Eq. 1.2 satisfying condition C are

d
x t y cx t y t s ysinh x t y x t y s 1.3Ž . Ž . Ž . Ž . Ž .

dt
and

d
x t y cx t y t s yh x t q h x t y s , 1.4Ž . Ž . Ž . Ž . Ž .Ž . Ž .

dt

for a locally Lipschitz continuous and increasing function h. In the case
Ž .where c s 0, Eq. 1.3 arises from the study of the motion of a classically
Ž w x. Ž .radiating electron see Kaplan, Sorg, and Yorke 17 , and Eq. 1.4 has

been used as a model for some population growth, the spread of epi-
demics, and the dynamics of capital stocks. We refer to Cooke and Kaplan
w x w x w x5 , Cooke and Yorke 6 , and Gyori 7 for more details. The additional˝

Ž .term cx t y t may be regarded as a certain feedback control mechanism
which adjusts the change of the system according to its past growth rate, or
may be viewed as the relapse of the infectious disease considered in the

w x Ž .Cooke]Kaplan model of epidemics. In Gyori and Wu 8 , Eq. 1.4 was˝
used to model the transmission dynamics of material in an active compart-
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mental system with one compartment and one pipe coming out of and
returning into the compartment, where the delay t is the length of time
required in the process in which some material is produced, while the
delay s represents the transit time for the material flow to pass through
the pipe.

Ž . Ž . Ž .Note that while Eq. 1.3 and Eq. 1.4 both satisfy condition C , only
Ž .Eq. 1.4 has a first integral, that is,

t 0
x t y cx t y t q h x s ds s x 0 y cx yt q h x s ds.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

tys ys

Ž .Furthermore, an immediate consequence of the assumption C is that
Ž .e¨ery constant function is a solution of 1.2 . This implies that the set of

equilibria contains at least an ordered arc parametrized by the real line.
This simple observation naturally motivates the following conjecture:

Ž .Conjecture. Every solution of 1.2 converges to a constant as t ª `.

Ž .In the case where c s 0, Eq. 1.2 reduces to a retarded functional
differential equation for which the conjecture has been proven to be true.

w xWe refer to Haddock 9 and references therein for the proof and various
important and useful technical tools developed in order to prove the

Ž .conjecture. On the other hand, if c is nonzero, then a solution of 1.2 is
not necessarily differentiable. This lack of differentiability is one of the
sources for the difficulties in the qualitative analysis of neutral equations.

w xThe above conjecture was first formulated by Haddock 9 in the case
t s s in 1987 after the successful development inspired by the similar
problem for retarded equations. In the case where 0 F c - 1 and t s s ,

w xthis conjecture was proved by Wu 28 , using some elementary comparison
method and differential inequalities technique. It was further confirmed by

w xHaddock, Krisztin, Terjeki, and Wu 11 , using an extension of the LaSalle’s´
invariance principle of Razumikhin type, and by Haddock, Nkashama, and

w xWu 13 , using a general convergence theorem for a semiflow defined on a
function space where each constant function is an equilibrium and the
semiflow preserves the ordering between a constant equilibrium and an

Žarbitrary initial point a slightly weaker order-preserving assumption than
that frequently used in the literature of the theory of monotone dynamical

. w xsystems . Also, in Wu and Freedman 31 , the following nonstandard
ordering was introduced for the phase space

f F c in C if and only if f 0 y cf yt F c 0 y cc yt ,Ž . Ž . Ž . Ž .
w xf s F c s , s g yr , 0 ,Ž . Ž .

Ž .and it was shown that the solution semiflow defined by 1.2 is eventually
strongly monotone with respect to this ordering. This enabled them to

w xapply some general results due to Hirsch 16 to verify the conjecture.
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The assumption t s s seems crucial in the aforementioned approaches.
This is not surprising as the conjecture is no longer true if this assump-

w xtion is not satisfied. For example, in Krisztin 18 , it was observed that if
' Ž . Ž .c s 2 y 1, t s pr4, s s 7pr4, h x s x then Eq. 1.4 does have a

periodic solution x s sin t. Some sufficient conditions guaranteeing the
validity of the conjecture in the case where t / s were given in Krisztin

w xand Wu 19 , where we introduced a dense strongly ordered subspace X of
C, defined by

1 ˙ ˙w xXs f g C yr , 0 ; R : f 0 y cf yr sy h f 0 q h f ys ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .� 4
endowed with the usual C1-topology. For each m G 0, we followed Smith

w xand Thieme 21 to define an order F on X bym

˙ ˙f F c in X iff f s F c s , f s q mf s F c s q mc s ,Ž . Ž . Ž . Ž . Ž . Ž .m

w xs g yr , 0 .

We then showed that, under certain technical conditions on t , s , c, and h,
Ž . Žthe solutions of Eq. 1.2 define a strongly order-preserving semiflow with

.respect to the order F on X so that the powerful convergence andm

stability theory of monotone dynamical systems first developed by Hirsch
w x w x w x16 and Matano 20 and later improved by Smith and Thieme 22]24 can

Žbe applied to conclude that the solution semiflow is convergent to
.constants . The drawback of this approach is that the convergence was only

established for the solutions starting from a point in X. One could
conclude the convergence of solutions starting from a point in C if the

Ž .stability of each constant function equilibrium in the phase space C is
known. Unfortunately, even the local stability of each constant function for

Ž .system 1.2 is a quite complicated problem, as the set of equilibria
Ž .constant functions is not a discrete set.

When both c and g depend on t periodically and when an analog of
Ž . Ž .condition C is satisfied, one naturally ask if every solution of 1.1

w xconverges to a periodic function. In Wu 29 , an asymptotic periodicity
Ž .theorem was established for the periodic neutral equation 1.1 under the

Ž .assumption that g t, x, x s 0, t s s s 1. More precisely, it was shown
Ž .that for every f g C, there exists a constant k f such that

w Ž .Ž . Ž . Ž Ž ..xlim x f t y k f r 1 y c t s 0. The asymptotic behaviors weret ª`

Žinvestigated in a series of papers by Arino and his collaborators see, for
w x w xexample, Arino and Bourad 2 , Arino and Haourgui 3 , and Arino and

w x.Seguier 4 for the following scalar neutral equation

d
x t y cx t y t s yh t , x t q h t y s , x t y s , 1.5Ž . Ž . Ž . Ž . Ž .Ž . Ž .

dt
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under the assumption that t s s and the orbits of h under the transla-
Ž . Ž .tions in time, h t, x s h t q s, x , s g R, are precompact in the space ofs

bounded continuous functions on R, for each fixed x. Their approach was
based on the monotonicity of solutions and the existence of the first

Ž .integral of 1.5 given by

0
J t , f s f 0 y c t f yt q h t q s, f s ds.Ž . Ž . Ž . Ž . Ž .Ž .H

ys

Ž .They proved that the asymptotic behaviors of solutions of 1.5 are com-
pletely determined by the values of the first integral at the corresponding

Ž . Ž .initial functions. In particular, they proved that if J 0, f s J 0, c and if
Ž .Ž . Ž .Ž . w .x 0, f t and x 0, c t are all bounded solutions on yr, ` then

w Ž .Ž . Ž .Ž .xlim x 0, c t y x 0, f t s 0. While Wu’s result applies to the gen-t ª`

Ž .eral neutral equation 1.1 without first integrals, the approach of Arino
Ž . Ž .and his collaborators could be applied to Eq. 1.5 with a first integral

with almost-periodic coefficients. Again, both approaches depend heavily
on the assumption that t s s .

The purpose of this paper is to discuss the asymptotic periodicity of
Ž . Ž .solutions of Eq. 1.5 when t / s and h t, x is 1-periodic in t, increasing

Ž .in x and h t, 0 s 0. Our approach is based on a combination of the
aforementioned methods and results and requires the monotone and
eventual strong monotone property with respect to a nonstandard order

Ž .F , the existence of a first integral, and the equivalence of 1.5 to anm

infinite delay differential equation. Since t s s is not assumed, there is no
monotonicity with respect to the standard ordering of C and the ordering

w x w xused by Wu and Freedman 31 . Following Smith and Thieme 21 , we
Ž .consider a dense subspace X the space of Lipschitz continuous functions

of C and a cone with nonempty interior in X. Then the monotonicity and
eventual monotonicity are shown in X with respect to the order relations
F and < induced by the cone and its interior, respectively.m m

The main result is that if there exists m ) 0 such that

0 F e mt c t - 1Ž .
and

­
mtm q min 0, c t y mc t e ) sup h t , x ,� 4Ž . Ž . Ž .˙

­ x2Ž .t , x gR

then the following very detailed information about the structure of the
Ž .solution set of 1.5 can be established:

Ž . Ž . w .i Boundedness in X. If f g X then x 0, f is bounded on yr, ` .
Ž .ii Structure of 1-Periodic Solutions. For any k g R there exists a

k Ž k .unique 1-periodic solution p such that J t, p s k for all t g R. More-t
over, k - k implies pk1 < pk 2 for all t g R.1 2 t m t
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Ž . Ž . Ž .iii Asymptotic Periodicity in C. If f g C, J 0, f s k, and x 0, f is
w . w Ž .Ž . kŽ .xbounded on yr, ` , then lim x 0, f t y p t s 0.t ª`

Ž . Ž . Ž .iv Oscillation in X. If f g X and J 0, f s k, then x 0, f is
oscillatory around pk with respect to the ordering < , that is, neitherm

Ž . k Ž . kx 0, f y p 4 0 nor x 0, f y p < 0 holds for all large t.t t m t t m

Let us remark that the general theory of monotone dynamical systems
can guarantee asymptotic periodicity only for a dense subset of initial

Ž .values of the phase space which is X here. If we already know ii , then a
w x w xgeneral convergence theorem of Takac 25 or Wu 29 can give asymptotic´˘

periodicity in the whole X. In this paper we show more; namely, asymp-
totic periodicity holds for all of those initial values from C for which the

w .corresponding solutions are bounded on yr, ` .

2. MONOTONICITY IN A NONSTANDARD ORDERING

Žw x .Let r G t ) 0 be given constants, C s C yr, 0 ; R the Banach space
w x < <of continuous functions from yr, 0 into R with the norm f sC

< Ž . < Žw . .sup f s , f g C. For every x g C yr, ` ; R and every t G 0,yr F sF 0
Ž . Ž .define x g C by x s s x t q s , yr F s F 0.t t

Consider the following scalar neutral functional differential equation

d
x t y c t x t y t s f t , x , 2.1Ž . Ž . Ž . Ž . Ž .tdt

where

Ž . 1Ž . Ž .i c g C R; R , 0 F c t - 1 for all t g R;
Ž . Ž .ii f g C R = C; R and f is locally Lipschitz continuous in its

second argument.

Ž .It is well known that the Cauchy initial value problem for 2.1 is well
posed in the space C. In particular, for each t g R and f g C there0

Ž . w Ž ..exists g s g t , f ) t and a unique continuous map x : t y r, g t , f0 0 0 0
Ž . Ž . Ž . Ž .ª R such that x s f, x t y c t x t y t is differentiable and 2.1 ist0w Ž .. Ž .satisfied on t , g t , f . We call this function the solution of 2.10 0

Ž . Ž . w Ž ..through t , f , denoted by x t , f , and call t y r, g t , f the maximal0 0 0 0
Ž . Ž .interval of existence of x t , f . It is known that if g t , f - `, then0 0

< < w xlim x s `. We refer to Hale 14 for more details.Ct ªg Ž t , f .y0 t0 0

In order to describe a certain order-preserving property of the solutions
Ž . w xof 2.1 , we follow Smith and Thieme 21 and introduce a dense subspace

of C. Let

w xX s f g C : f is Lipschitz continuous on yr , 0� 4
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and define

f t y f sŽ . Ž .
< < < <f s max f , sup : yr F s - t F 0 .X C ½ 5½ 5t y s

Then X is a Banach space. We also use

w x w x w xC a, b s x g C a, b ; R : x is Lipschitz continuous on a, b ,� 4Ž .L

x t y x sŽ . Ž .
< < < <x s max x , sup : a F s - t F b ,C w a , b x C w a , b xL ½ 5½ 5t y s

< <x s sup x s : a F s F b .� 4Ž .C w a , b x

Let m G 0 be a given constant and define

˙w xK s f g X : f s G 0 for s g yr , 0 , f s q mf sŽ . Ž . Ž .�m

w xG 0 a.e. in yr , 0 .4

K is a closed cone in X. Its interior can be given bym

˙w xInt K s f g X : f s ) 0 for s g yr , 0 , ess inf f q mf ) 0 .Ž . Ž .½ 5m wyr , 0x

Using the cone K , we can define an order relation F in X such thatm m

f F c if c y f g K . We will write f < c if c y f g Int K . Them m m m

relation f - c will mean that f F c and f / c . An equivalent defini-m m

Ž . Ž . msw Ž . Ž .xtion for f F c is that f s F c s and e c s y f s is nondecreas-m

w x w xing for s g yr, 0 . We refer to Smith and Thieme 21 for detailed
discussions of the space X and its ordering induced by K .m

Žw x .LEMMA 2.1. Let T ) 0 be a gï en constant. If f g X, y g C yr, T ; R ,
w xand h g C 0, T are gï en so thatL

y t y c t y t y t s h t , 0 F t F T ,Ž . Ž . Ž . Ž .½ y s f ,0

w xthen y g C yr, T andL

1 c1
< < < < < <y F q max f , h ,� 4C wyr , T x X C w0, T xL L2ž /1 y c 1 y cŽ .0 0

� Ž . 4 � < Ž . < 4where c s sup c t : 0 F t F T , c s sup c t : 0 F s F T .˙0 1
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w xProof. The conclusion that y g C yr, T follows from the equalityL
Ž . Ž . Ž . Ž . w xy t s c t y t y t q h t , t g 0, T , and the method of steps. The above

equality also implies

y t F c t y t y t q h tŽ . Ž . Ž . Ž .

and

y t y y s y t y t y y s y tŽ . Ž . Ž . Ž .
F c tŽ .

t y s t y s

c t y c s h t y h sŽ . Ž . Ž . Ž .
q y s y t qŽ .

t y s t y s

for 0 F s - t F T. From the first inequality it follows that

1
< < < < < <y F max f , h ,C wyr , T x C C w0, T x½ 51 y c0

while the second implies

c 11
< < < < < < < <y F max f , y q h ,Li pwyr , T x Li pwyr , T x C wyr , T x Li pw0, T x½ 51 y c 1 y c0 0

< < � <Ž Ž . Ž .. Ž . < 4where x means sup x t y x s r t y s : a F s - t F b . TheLi pw a, b x
< <stated inequality for y can be easily obtained from the estimationC wyr , T xL

< < < <for y and y . This completes the proof.C wyr , T x Li pwyr , T x

Ž . w Ž ..LEMMA 2.2. Assume that t , f g R = X is gï en and t g t , g t , f0 0 0
Ž . Ž .is fixed. Then x t , f g X and the mapping f g X ¬ x t , f g X ist 0 t 0

continuous.

Ž . Ž .Ž . w Ž .. Ž .Proof. Let x t s x t , f t for t g t , g t , f . Integrating 2.1 , we0 0 0
obtain

t
x t y c t x t y t s f 0 y c t f yt q f s, x ds.Ž . Ž . Ž . Ž . Ž . Ž . Ž .H0 s

t0

Since the right-hand side of the above equality is differentiable, Lemma
Ž .2.1 implies that x s x t , f g X. In order to show the continuity oft t 0

Ž . Ux t , f in f g X, we let f, c g X be given and define g st 0
� Ž . Ž .4 Ž U . Ž .min g t , f , g t , c . Choose T g t , g arbitrarily and let u s x t , f ,0 0 0 0
Ž .¨ s x t , c , z s u y ¨ . From the local Lipschitz continuity of f in its0
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� 4second argument and from the compactness of the set D u , ¨ itt gw t , T x t t0

follows that

< <f t , u y f t , ¨ F M z , t F t F TŽ . Ž . Ct t t 0

Ž . Ž . Ž .for some constant M ) 0. Applying Lemma 2.1 with y t s z t , h t s
Ž . Ž . Ž . Ž . Ž . Ž . t w Ž . Ž .xf 0 y c t f yr y c 0 q c t c yt q H f s, u y f s, ¨ ds, we0 0 t s s0

obtain

< <z F z ?Ž . w xC yr , TXT L

1 c1
< <F q max f y c , 1 q c f y c. Ž . CX 0½2ž /1 y c 1 y cŽ .0 0

< <qM T y t q 1 sup z .Ž . C0 t 5
t FtFT0

Ž .Therefore, our conclusion follows from the continuity of x t , f witht 0
respect to f in the space C. This completes the proof.

Remark 2.1. H. Smith and T. Zhang pointed out to us that the mapping
Ž .t ¬ x t , f is not necessarily continuous from R to X. So, even in thet 0

case where both c and f are independent of t, the scalar equation does
not define a semiflow in the space X.

Ž . Ž . Ž . Ž . Ž .THEOREM 2.1. Let D t, f s f 0 y c t f yt for t, f g R = C.
Assume e mt c - 1 and that the following condition is satisfied:0

Ž . w Ž . Ž .x Ž . Ž .M f F c implies m D t, c y D t, f q f t, c y f t, f qm

Ž .w Ž . Ž .xc t c yt y f yt G 0.˙
Then we ha¨e

f F c implies x t , f F x t , c for t G t .Ž . Ž .m t 0 m t 0 0

Ž . Ž . Ž .Proof. For any e ) 0 define f t, f s eD t, f q f t, f and denotee

Ž .Ž .by x t , f, e t the unique solution of0

d¡
D t , x s f t , f ,Ž . Ž .t e~ dt¢x s f .t0

By the well-known continuous dependence on initial data and the right-
hand functionals of solutions to neutral equations on the space C, for
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� Ž . Ž .4every fixed positive T - min g t , f , g t , c , there exists e ) 0 such0 0 0
Ž . Ž .Ž . Ž .Ž . w xthat if e g 0, e then x t , f, e t and x t , c , e t exist on 0, T .0 0 0
w x Ž . Ž . w xLet t g 0, T be the maximal time such that x t F y t on 0, t and1 1

m tw Ž . Ž .x w x Ž . Ž .Ž .e y t y x t is nondecreasing on yr, t , where x t s x t , f, e t ,1 0
Ž . Ž .Ž .y t s x t , c , e t . We want to show that t s T.0 1

Ž . Ž .By way of contradiction, we assume t - T. If x t s y t , then1 1 1

m t m t10 s e y t y x t G e y t y x t G 0Ž . Ž . Ž . Ž .1 1

w xfor all t g yr, t . Therefore, f s c . Hence, by uniqueness, t is not the1 1
Ž . Ž . Ž .maximal time satisfying the stated properties. So, y t ) x t . Let z t s1 1

Ž . Ž . Ž .y t y x t . By condition M , we obtain

d
m t m t1<e D t , z q e c t z t y tŽ . Ž . Ž .˙Ž . ts tt 1 11dt

m t1s e mD t , z q f t , y y f t , x q c t z t y tŽ . Ž .˙Ž . Ž . Ž .1 t 1 t 1 t 1 11 1 1

q e e m t1 D t , zŽ .1 1

G e e m t1 D t , zŽ .1 t1

m t mt ymt1s e e z t y c t e e z t y tŽ . Ž . Ž .1 1 1

m t mt1G e e z t 1 y c t e ) 0.Ž . Ž .1 1

Ž .Ž m t Ž .. m t Ž . Ž .Therefore, since drdt e D t, z q e c t z t y t is continuous at˙t
Ž .t s t continuous from the right if t s 0 , there exists a ) 0 and d ) 01 1

such that d - t and

d
m t m te D t , z q e c t z t y t G a , t F t F t q d .Ž . Ž . Ž .˙Ž .t 1 1dt

Thus, integrating from s to t, we get

e m tD t , z y e msD s, z q e m tc t z t y t y e m sc s z s y tŽ . Ž . Ž . Ž . Ž . Ž .t s

dt
muy c u e z u y t duŽ . Ž .Ž .H dus

G a t y s , t F s F t F t q d .Ž . 1 1

That is,

dt
m t m s mt mŽuyt .e z t y e z s G a t y s q c u e e z u y t duŽ . Ž . Ž . Ž . Ž .H dus
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m t Ž . w xfor t F s F t F t q d . We know that e z t is nondecreasing on yr, t1 1 1
m t Ž .and t q d y t - t . Therefore, the integral is nonnegative and e z t y1 1

ms Ž . Ž . m t Ž .e z s G a t y s , t F s F t F t q d follows. This shows that e z t is1 1
w xincreasing on t , t q d , contradicting the maximality of t .1 1 1

w xSo, x F y on t , T . Letting e ª 0, we obtain the monotonicity andt m t 0
complete the proof.

THEOREM 2.2. Assume e mt c - 1 and that the following condition is0
satisfied:

Ž . w Ž . Ž .x Ž . Ž .SM f - c implies m D t, c y D t, f q f t, c y f t, f qm

Ž .w Ž . Ž .xc t c yt y f yt ) 0.˙
Then we ha¨e

f - c implies x t , c < x t , f for t G t q r .Ž . Ž .m t 0 m t 0 0

Ž . Ž .Ž . Ž . Ž .Ž . Ž . Ž . Ž .Proof. Let x t s x t , f t , y t s x t , c t , z t s y t y x t . By0 0
Theorem 2.1, if f - c then x F y for t G t . It also follows thatm t m t 0
Ž . Ž .x t - y t for t G t . Thus x - y for t G t . Let T G t q r be fixed. By0 t m t 0 0

Ž . � 4condition SM and the compactness of D x , y in C, we havet F t F T t t0

b s min mD t , z q f t , y y f t , x q c t z t y t ) 0.� 4Ž . Ž . Ž . Ž . Ž .˙0 t t t
t FtFT0

So

d
D t , z q mD t , z q c t z t y t G b ) 0, t F t F T .Ž . Ž . Ž . Ž .˙t t 0 0dt

That is,

z t q m z t y c t z t y t q m z t y t G b ) 0Ž . Ž . Ž . Ž . Ž .˙ ˙ 0

w x Ž . Ž . w xa.e. on t , T . As z t y t q m z t y t G 0 a.e. on t , T , we obtain˙0 0
Ž . Ž . w x w xz t q m z t G b ) 0 a.e. on t , T , that is, x < y for t g t q r, T .˙ 0 0 t m t 0

The proof is complete.

EXAMPLE 2.1. For illustrative purpose, let us now consider the follow-
ing scalar neutral functional differential equation

d
x t y c t x t y t s g t , x t , x t y s , 2.2Ž . Ž . Ž . Ž . Ž . Ž .Ž .

dt

Ž . 3where 0 F c t - 1 for t g R, t ) 0, s G 0, g : R ª R is locally Lipschitz
continuous in its second and third arguments, and

­ g t , x , y ­ g t , x , yŽ . Ž .
L s inf ) y `, L s inf ) y `.1 2

3 3­ x ­ yŽ . Ž .t , x , y gR t , x , y gR
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Then g satisfies the following one-sided global Lipschitz condition in x
and y:

Ž . Ž . Ž . ŽL If x F x and y F y , then g t, x , y y g t, x , y G L x1 2 1 2 2 2 1 1 1 2
. Ž .y x q L y y y .1 2 2 1

Ž . Ž . Ž . Ž . Ž .For the above equation, D t, f s f 0 y c t f yt , f t, f s
Ž Ž . Ž .. Žw x . � 4g t, f 0 , f ys for f g C yr, 0 ; R , where r s max t , s . We now fix

m G 0. Then for any c G f, we havem

m D t , c y D t , f q f c y f f q c t c yt y f ytŽ . Ž . Ž . Ž . Ž . Ž . Ž .˙
G m c 0 y f 0 y c t m c yt y f ytŽ . Ž . Ž . Ž . Ž .

q c t c yt y f ytŽ . Ž . Ž .˙
q L c 0 y f 0 q L c ys y f ysŽ . Ž . Ž . Ž .1 2

s m q L c 0 y f 0 q c t y c t m c yt y f ytŽ . Ž . Ž . Ž . Ž . Ž . Ž .˙1

q L c ys y f ys .Ž . Ž .2

Note that c G f implies thatm

ym uc 0 y f 0 G c yu y f yu e , u s t , s . 2.3Ž . Ž . Ž . Ž . Ž .

y � 4Let a s ymin a , 0 for a real number a . Then for f F c , we havem

m D t , c y D t , f q f t , c y f t , f q c t c yt y f ytŽ . Ž . Ž . Ž . Ž . Ž . Ž .˙
G m q L c 0 y f 0 q c t y c t mŽ . Ž . Ž . Ž . Ž .˙1

y= c yt y f yt y L c ys y f ysŽ . Ž . Ž . Ž .2

y mt y msG m q L y c t y c t m e y L e c 0 y f 0 .Ž . Ž . Ž . Ž .˙1 2

Ž .Therefore, condition M holds if

y mt y msm q L y c t y c t m e y L e G 0. 2.4Ž . Ž . Ž .˙1 2

Ž . Ž . Ž .Notice also that if c ) f then c 0 ) f 0 and hence SM is satisfied ifm

y mt y msm q L y c t y c t m e y L e ) 0. 2.5Ž . Ž . Ž .˙1 2

Ž . Ž .Other sets of sufficient conditions to guarantee M or SM can be given,
Ž . Ž .w Ž .using different combinations of 2.3 in the estimations of m q L c 01

Ž .x w Ž . Ž . xw Ž . Ž .x w Ž . Ž .xy f 0 q c t y c t m c yt y f yt q L c ys y f ys .˙ 2
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3. OSCILLATION AND ASYMPTOTIC PERIODICITY

We now consider the following scalar neutral functional differential
equation

d
x t y c t x t y t s yh t , x t q h t y s , x t y s , 3.1Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

dt

where

Ž .C1 t ) 0, s G 0;
Ž . 1Ž . Ž . Ž . Ž .C2 c g C R; R , 0 F c t - 1, c t q 1 s c t for t g R;
Ž . Ž 2 . Ž . Ž . Ž . Ž . Ž .C3 h g C R ; R , h t, x s h t q 1, x , h t, 0 s 0, ­r­ x h t, x

Ž . Ž . 2is continuous, and h t, x is increasing in x for all t, x g R .
Ž .Comparing with Eq. 2.2 in Example 2.1, we have

g t , x , y s yh t , x q h t y s , y .Ž . Ž . Ž .

So

­
L s y sup h t , x ,Ž .1 ­ x2Ž .t , x gR

­
L s inf h t , x .Ž .2

2 ­ xŽ .t , x gR

We assume

Ž . Ž . Ž .2C4 sup ­r­ x h t, x - `;Ž t, x .g R

Ž . w Ž . Ž . xy mtC5 there exists m ) 0 such that m y c t y c t m e )˙
Ž . Ž .2sup ­r­ x h t, x .Ž t, x .g R

Ž . Ž . Ž . Ž .Clearly, C5 holds if c t and c t are sufficiently small. Note that C5˙
Ž .is exactly the condition 2.5 . So if we further assume

Ž . mt � Ž . 4C6 e c - 1, c s sup c t ; 0 F t F 1 ;0 0

Ž . Ž .then if f - c and t g R are given, then x t , f F x t , c for t G tm 0 t 0 m t 0 0
Ž . Ž .and x t , f < x t , c for t G t q r. Throughout the remainder oft 0 m t 0 0

Ž . Ž .this section, we assume C1 ] C6 are satisfied.
The main result of this paper is the next theorem.

Ž . Ž .THEOREM 3.1. Assume that conditions C1 ] C6 are satisfied. Then the
Ž .solutions of 3.1 ha¨e the following properties:

Ž . Ž . w . � Ž . 4i If f g X then x 0, f exists on yr, ` and the set x 0, f : t G 0t
is bounded in X.
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Ž . k Ž .ii For any k g R there is a unique 1-periodic solution p of 3.1 such
Ž k .that J t, p s k.t

Ž . Ž . Ž . Ž . w .iii If f g C, J 0, f s k, x 0, f is a solution of 3.1 on yr, `
� Ž . 4 w Ž .Ž .and the set x 0, f : t G 0 is bounded in C, then lim x 0, f t yt t ª`

kŽ .xp t s 0.
Ž . Ž . Ž . kiv If f g X and J 0, f s k, then x 0, f is oscillatory around p

Ž . k Ž .with respect to the ordering < , i.e., neither x 0, f y p 4 0 nor x 0, fm t t m t
y pk < 0 holds for all large t.t m

In the remaining part of this section we prove Theorem 3.1. The proof is
contained in several lemmas. The monotonicity, which is one of the main
ingredients of the proof, was considered in Section 2. The other basic tool

Ž . Ž .is that Eq. 3.1 has a first integral, that is, for any solution x s x 0, f of
Ž . w .3.1 defined on yr, ` , we have

0
J t , x [ x t y c t x t y t q h t q s, x t q s dsŽ . Ž . Ž . Ž . Ž .Ž .Ht

ys

s J 0, f , t G 0. 3.2Ž . Ž .
Ž . Ž .It is easy to show that if f - c then J t, f - J t, c for all t g R. Inm

Ž . Ž . m sw Ž . Ž .x Ž . Ž .fact, f - c implies f s F c s and e c s y f s F c 0 y f 0m

w x Ž . Ž .for s g yr, 0 , moreover f 0 - c 0 . Therefore, the monotonicity of h
in its second argument implies that

J t , c y J t , f G c 0 y f 0 y c c yt y f ytŽ . Ž . Ž . Ž . Ž . Ž .0

mtG 1 y c e c 0 y f 0 ) 0.Ž . Ž .0

Now we can show the boundedness statement of Theorem 3.1.

Ž . w .LEMMA 3.1. If f g X then x 0, f exists on yr, ` and the set
� Ž . 4x 0, f : t G 0 is bounded in X.t

Ž . Ž .Proof. The zero function is a solution of 3.1 since h t, 0 s 0. If
Ž .Ž . w Ž ..f ) 0, then x 0, f t G 0 for all t g 0, g f by Theorem 2.1. So fromm

Ž .3.2 and the monotonicity of h in its second argument it follows that
< Ž . < < Ž . < Ž . Ž . Ž .Ž .sup x t F J 0, f r 1 y c . Thus, g f s ` and x 0, f tyr F t -g Žf . 0

w .exists on yr, ` and is bounded. A similar result holds if f - 0. Form

arbitrary f g X, we can choose constant functions m, M in X such that
Ž . Ž .m - 0 - M and m - f - M. So, x 0, m and x 0, M are boundedm m m m

w .functions from yr, ` into R. The inequality

x 0, m t F x 0, f t F x 0, M tŽ . Ž . Ž . Ž . Ž . Ž .
Ž .Ž .also holds for all t G yr such that x 0, f t exists. Therefore, we obtain

Ž . � Ž . 4the global existence of x 0, f and the boundedness of x 0, f : t G 0t
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� Ž . 4in C. Boundedness of x 0, f : t G 0 in X comes from Lemma 2.1t
Ž . Ž .Ž . Ž . Ž . Ž . Ž . t Ž Ž ..with y t s x 0, f t , h t s y 0 y c 0 y yt y H h s, y s ds q0

t Ž Ž .. w .H h s y s , y s y s ds and the fact that h g C 0, ` .0 L

We now derive an important integral equation for bounded solutions of
Ž . Ž . w . Ž .3.1 . First, note that if x is a solution of 3.1 on yr, ` , then 3.2 holds.

Ž .If t G t , then 3.2 implies
tyt

c t x t y t y c t c t y t x t y 2t q c t h s, x s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
tysyt

s J 0, f c t .Ž . Ž .
If t G 2t , then

c t c t y t x t y 2t y c t c t y t c t y 2t x t y 3tŽ . Ž . Ž . Ž . Ž . Ž . Ž .
ty2t

q c t c t y t h s, x s ds s J 0, f c t c t y t .Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
tysy2t

Repeating the same argument, we obtain for any nonnegative integer
w xj F trt the following
jy1 j

c t y it x t y jt y c t y it x t y j q 1 tŽ . Ž . Ž . Ž .Ž .Ł Łž / ž /is0 is0

jy1 jy1
tyjt

q c t y it h s, x s ds s J 0, f c t y it ,Ž . Ž . Ž . Ž .Ž .Ł ŁHž / tysyjtis0 is0

y1 Ž .where Ł c t y it s 1. Summarizing up in the above equation as j goesis0
w xfrom 0 to trt , we get

w xtrt jy1
tyjt

x t q c t y it h s, x s dsŽ . Ž . Ž .Ž .Ý Ł Hž / tysyjtis0js0

w xtrt

w xy c t y it x t y trt q 1 tŽ . Ž .Ž .Łž /is0

w xtrt jy1

s J 0, f c t y it . 3.3Ž . Ž . Ž .Ý Ł
is0js0

Ž .If x is a bounded solution on y`, ` , then similar arguments lead to
jy1`

tyjt
x t q c t y it h s, x s dsŽ . Ž . Ž .Ž .Ý Ł Hž / tysyjtis0js0

jy1`

s J 0, f c t y it . 3.4Ž . Ž . Ž .Ý Ł
is0js0
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Let us define

NN s f g X : either x 0, f g Int K or yx 0, fŽ . Ž .� t m t

g Int K for sufficiently large t 4m

and OO s X _ NN. Clearly, by Lemma 2.2 and Theorem 2.2, NN is open and OO

Ž . Ž .is closed. The solution x 0, f with f g NN f g OO will be called nonoscil-t
Ž .latory oscillatory .

The following result gives a characterization of oscillatory solutions in
terms of the first integral.

Ž .LEMMA 3.2. J 0, f s 0 for some f g X if and only if f g OO.

Ž .Proof. We prove the equivalent statement: J 0, f / 0 if and only if
f g NN.

If f g NN then, without loss of generality, we may assume that for
Ž . m t Ž . Ž .sufficiently large t, x t ) 0 and e x t is increasing, where x s x 0, f .

Ž . ymt Ž . Ž . Ž .In particular, x t ) e x t y t follows. If J 0, f s 0, then 3.2 and
Ž Ž .. Ž . Ž . Ž . ymth t, x t ) 0 imply that x t - c t x t y t for all large t. Thus e -
Ž . Ž .c t if t is large, a contradiction to C6 . Therefore, f g NN implies
Ž .J 0, f / 0.

Ž . Ž .Now we show that J 0, f ) 0 implies f g NN. The case J 0, f - 0 is
Ž .analogous. By way of contradiction, suppose that J 0, f ) 0 and f g OO.

Choose a constant function M from X such that M ) 0 and M ) f. Wem m

Ž .have M g NN because of h t, 0 s 0 and Theorem 2.2. Define a continuous
w x Ž . Ž . Ž .function H : 0, 1 ª X by H l s lM q 1 y l f. Then H 1 s M g NN

Ž . Ž .and H 0 s f g OO. It is easy to see that H l is monotone with respect to
w . Ž .- . As OO is closed, there is a l g 0, 1 such that H l g OO andm 0 0

Ž . Ž x � 4̀ � 4H l g NN if l g l , 1 . Choose a sequence l such that l is0 n ns1 n
Ž . n Ž .strictly decreasing and l ª l as n ª `. Let f s H l , x s x 0, f ,n 0 n n n

Ž . Ž .J s J 0, f , n s 0, 1, 2, . . . . From the monotonicity of H l it followsn n
� 4̀that J tends to J in a strictly decreasing way. Since f g NN forn ns1 0 n

nŽ .n s 1, 2, . . . , for each n G 1 there exists T such that x t ) 0 andn
nŽ . nŽ . w . nŽ . ym Ž t2yt 1. nŽ .x t q m x t ) 0 a.e. on T , ` . In particular, x t ) e x t˙ n 2 1

nŽ . Ž . nŽ .follows for T F t - t - `. From x t y c t x t y t qn 1 2
t Ž nŽ .. nŽ .H h s, x s ds s J ) J ) 0 and from x t ) 0 for t G T , it followstys n 0 n

nŽ .that there exists b ) 0 such that max x s G b for t G T q r.0 tys F sF t 0 n
nŽ . y2 msThen we get x t ) e b for all t G T q r. The constant b can be0 n 0

nŽ .chosen independently of n. Thus, we have x t G b ) ` for all t G T q r,n
where b s ey2 msb .0
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0Ž . Ž .Next we want to show that lim inf x t G b. From 3.3 we obtaint ª`

w xtrt jy1
n 0x t y x t q c t y itŽ . Ž . Ž .Ý Łž /is0js0

tyjt n 0= h s, x s y h s, x s dsŽ . Ž .Ž . Ž .H
tysyjt

w xtrt ky1

s J y J c t y itŽ . Ž .Ý Łn 0
is0js0

w xtrt
n w xq c t y it x t y trt q 1 tŽ . Ž .Ž .Łž /is0

0 w xyx t y trt q 1 t .Ž .Ž .

For any e ) 0 one can find t and n such that for t G t and n G n the0 0 0 0
right-hand side is less than e . We know from monotonicity that all terms

nŽ . 0Ž .of both sides are nonnegative. Consequently, x t y x t - e for all
0Ž .t G t , n G n . If t G T q r also holds, then x t ) b y e follows.0 0 n

0Ž .Therefore, lim inf x t G b follows because e ) 0 was arbitrary.t ª`

We cannot have x 0 g K for any t G 0 because of x 0 / 0 and Theoremt m t
0Ž .2.2. We already know that x t ) 0 for all large t. Thus one can find

� 4 � 4 w xsequences t and s such that t ª `, t G T q n, s g yr, 0 , andn n n n n n

x 0 t - e msn x 0 t q s .Ž . Ž .n n n

0Ž .Lemma 2.1 implies that the sequence of functions x t q t is equicontin-n
uous on each compact subinterval of R. Thus, by the Arzela]Ascoli

� 4 � 4 Ž � 4theorem, there are subsequences of t and s denoted again by t andn n n
� 4. U w xs such that s ª s g yr, 0 andn n

x 0 t q t ª y t , n ª `Ž . Ž .n

uniformly in t on each compact subinterval of R. The limit function y
satisfies

tqv
y t y c t q v y t y t q h s, y s ds s JŽ . Ž . Ž . Ž .Ž .H 0

tqvys

w xfor all t g R and for some v g 0, 1 , and also

y 0 F e msU

y sU .Ž . Ž .



SCALAR NEUTRAL EQUATIONS 519

� 4 ŽBy using the diagonalization process, a subsequence of t denoted againn
� 4.by t can be chosen such thatn

x n t q t ª z t , n ª `,Ž . Ž .n

uniformly in t on each compact subinterval of R. The function z also
satisfies

tqv
z t y c t q v z t y t q h s, z s ds s JŽ . Ž . Ž . Ž .Ž .H 0

tqvys

m t Ž .because J ª J . From t G T q n it also follows that e z t is mono-n 0 n n
tone nondecreasing on R. Then z g K for all t g R. By Theorem 2.2,t m

m t Ž .z g Int K for all t g R. That is, e z t is strictly increasing on R. Fromt m
nŽ . 0Ž . Ž . Ž . Ž .x t G x t , t G yr, we get z t G y t for all t g R. Equation 3.4

Ž .holds for both y and z with t q v instead of t and J 0, f s J . Subtract-0
ing these two equations, we obtain

jy1`

z t y y t q c t q v y itŽ . Ž . Ž .Ý Łž /is0js0

tqvyjt
= h s, z s y h s, y s ds s 0, t g R .Ž . Ž .Ž . Ž .H

tqvysyjt

Ž . m t Ž .This implies z ' y since h s, ? is increasing. Therefore, e y t is also
Ž . m sU Ž U .strictly increasing, contradicting y 0 F e y s . This completes the

proof.

The following result shows that each oscillatory solution converges to
zero.

Ž . Ž .Ž .LEMMA 3.3. If f g X and J 0, f s 0 then x 0, f t ª 0 as t ª `.

Proof. In the same way as in the proof of Lemma 3.2, one can find
� 4̀a sequence f in X such that f F F f - ??? - f - ??? -n ns0 m 0 m m n m m

f - f , f g OO, f , f ??? g NN, f ª f , n ª `. By Lemma 3.2,2 m 1 0 1 2 n 0
Ž . Ž . Ž .J 0, f s 0. From f ª f , J 0, f ª J 0, f follows. If t is large0 n 0 n 0

Ž .Ž . m t Ž .Ž .enough, then x 0, f t ) 0 and e x 0, f t is increasing. Hence itn n
Ž . Ž .Ž . Ž . Ž .Ž . Ž .Ž .wfollows that J 0, f G x 0, f t y c t x 0, f t y t G x 0, f t 1 yn n n n

Ž . mt x Ž .Ž . Ž .Ž .c t e for all large t. By the monotonicity, x 0, f t F x 0, f t F0
Ž .Ž . Ž . Ž .Ž .x 0, f t , t G yr. Using J 0, f ª 0, we get lim sup x 0, f t F 0.n n t ª`

Ž Ž ..Analogously, one can show that lim inf x 0, f t G 0. The proof ist ª`

complete.

Ž .We now consider the structure of the set of 1-periodic solutions of 3.1 .
The next lemma says that this set is an ordered arc parametrized by R.
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Ž .LEMMA 3.4. For any k g R, 3.1 has one and only one 1-periodic
k Ž k . k1 k 2solution p s p with J 0, p s k. Moreo¨er, if k - k then p < p for0 1 2 t m t

all t g R.

Proof. Denote by P the set of 1-periodic continuous functions endowed
with the supremum norm. Consider the operator G defined in P by

t tyt
G x t s h s, x s ds q c t h s, x s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .H H

tys tysyt

ty2t
q c t c t y t h s, x s ds q ??? .Ž . Ž . Ž .Ž .H

tysy2t

Ž . Ž . Ž . Ž . Ž .Let p t s 1 q c t q c t c t y t q ??? . We have p g P. By 3.4 , the
Ž . Ž .solutions x of 3.1 which are 1-periodic with k s J t, x are exactly thet

Ž .Ž .points x in P such that Id q G x s kp.
We now show that the derivative Id q K of Id q G at any f g P is an

isomorphism, where

­ ­t tyt
Kc t s h s, f s c s ds q c t h s, f s c s dsŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

­ x ­ xtys tysyt

­ty2t
q c t c t y t h s, f s c s ds q ??? .Ž . Ž . Ž . Ž .Ž .H

­ xtysy2t

It is easy to see that K : P ª P is compact. Thus, Id q K is an isomor-
Ž . Ž .phism if it is injective. It is enough to show that if Id q K y t s 0 for

t g R with a 1-periodic y, that is,

­ ­t tyt
y t q h s, f s y s ds q c t h s, f s y s dsŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

­ x ­ xtys tysyt

­ty2t
q c t c t y t h s, f s c s ds q ??? s 0, t g R ,Ž . Ž . Ž . Ž .Ž .H

­ xtysy2t

Ž . Ž .then y t s 0 for t g R. Since y satisfies an equation of the form 3.1 , for
Ž . Ž Ž ..which there is a corresponding first integral, with ­r­ x h s, f s y in-

Ž . Ž . Ž .stead of h s, y and the conditions analogous to C1 ] C6 are satisfied,
Ž . Ž .Lemma 3.3 implies y t ª 0 as t ª `. Then y t s 0 for all t g R

Ž .because of the periodicity. This also shows that for each fixed k, 3.1 has
Ž .at most one 1-periodic solution x with J t, x s k.t

Ž . Ž .Define F : P = R ª R by F x, k s Id q G x y kp. Since 0 is a solu-
Ž . Ž .tion of 3.1 , we have F 0, 0 s 0. Moreover we have seen that the

Ž .derivative of F with respect to x at 0, 0 is an isomorphism. Consequently,
Ž .by the implicit function theorem, there is an open interval a, b such that
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Ž . Ž . Ž .0 g a, b and, for every k g a, b , 3.1 has an 1-periodic solution,
denoted by pk, such that p0 s 0 and pk is continuous as a mapping from
Ž . Ž . Ž . k1Ž . k 2Ž .a, b to P. If k , k g a, b , k - k , then x t s p t y p t satis-1 2 1 2

Ž . Ž . Ž . U Ž .fies Eqs. 3.1 and 3.2 such that h t, x is changed to h t, x , where
U Ž . Ž k 2Ž . . Ž k 2Ž .. U Ž . Ž .h t, x s h t, p t q x y h t, p t . Since h satisfies C3 ] C5 and

the value of the corresponding first integral for x is k y k ) 0, Lemma2 1
3.2 can be applied to conclude x g NN. From the periodicity and k y k0 2 1
) 0 we obtain x 4 0 for all t g R. This means that pk 2 4 pk1, t g R.t m t m t

Ž . Ž . k 2Ž .Hence, using 3.2 and the monotonicity of h t, ? , we can get p t y
k1Ž . Ž . Ž Ž . m t.p t F k y k r 1 y c t e for all t g R. This shows the continuity2 1

k Ž . Ž .of k ¬ p from a, b to C. Applying 3.4 and Lemma 2.1 it can be shown
k Ž .that k ¬ p is also continuous as a function from a, b to X. The limit

kŽ . Ž .lim p t s y t is uniform in t an defines an 1-periodic function yk ª by
Ž . bwith J t, y s b. Let p s y. In the same way as above, we can show thatt

there is an open interval containing b such that for any k in this interval,
pk is the unique 1-periodic solution. Continuing this process, we get a
unique 1-periodic solution pk for any real k. The continuity of k ¬ pk

and the monotonicity with respect to < come from Lemmas 2.1 and 3.2.m

The convergence and oscillation statement of Theorem 3.1 for solutions
with initial functions from X is an easy corollary of Lemmas 3.2 and 3.3.

Ž . w Ž .Ž . kŽ .xLEMMA 3.5. If f g X and J 0, f s k, then lim x 0, f t y p tt ª`

Ž . ks 0 and x 0, f oscillates around p .

Ž .Ž . kŽ . Ž .Proof. The difference x 0, f t y p t satisfies 3.1 such that h is
U Ž . Ž kŽ . . Ž kŽ ..changed to h t, x s h t, p t q x y h t, p t . For the corresponding

U Ž Ž . k . Ž . Ufirst integral, J t, x 0, f y p s J 0, f y k s 0 holds. Since h hast t
Ž . Ž .the properties C3 ] C5 , Lemmas 3.2 and 3.3 are also valid for the

k Ž .Ž . kŽ .modified equation. Consequently, f y p g OO, x 0, f t y p t ª 0 as0
t ª ` and the proof is complete.

Only one statement of Theorem 3.1 is left to show. This is contained in
the next lemma.

Ž . Ž . w .LEMMA 3.6. If f g C, J 0, f s k, x 0, f exists on yr, ` and the set
� Ž . 4 w Ž .Ž . kŽ .xx 0, f : t G 0 is bounded in C, then lim x 0, f t y p t s 0.t t ª`

Ž .Proof. It is enough to consider the case J 0, f s 0. Otherwise take
the difference f y pk and use the idea of the proof of Lemma 3.5.0

Ž . Ž .Ž .Thus, assume f g C, J 0, f s 0, and x 0, f t exists and bounded on
w . Ž .Ž . 0yr, ` . We have to show that x 0, f t ª 0 as t ª ` since p s 0.

Ž . Ž .We will use the Poincare map T : C ª C, T f s x 0, f and the´ 1
� n 4 Ždiscrete dynamical system T : n s 0, 1, . . . in C. It is known see, e.g.,

w x. Ž .Hale 14 that T is continuous. Define the v-limit set v f sC
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` jŽ .F Cl D T f where the closure is taken in C. The boundedness ofnG 0 jsn
� Ž . 4 Ž w x.x 0, f : t G 0 in C implies its precompactness in C see, e.g., Hale 14 .t

Ž .Then it follows that v f is a nonempty, compact, invariant subset of CC
nŽ . Ž . Ž .and T f ª v f as n ª `. Clearly, it is enough to prove that v fC C

contains only the zero function.
Ž . Ž .Let c g v f . The invariance property of v f means that there is aC C

Ž .bounded continuous function on R such that y s c and y satisfies 3.10
Ž .on R. Moreover, J t, y s 0 andt

jy1`
tyjt

y t q c t y it h s, y s ds s 0 3.5Ž . Ž . Ž . Ž .Ž .Ý Ł Hž / tysyjtis0js0

also hold for all t g R.

� 4Claim. Y s y : n g Z is precompact in X.n

� 4In order to show the Claim let n be a sequence of integers. Since Y isl
Ž .a subset of the C-compact, invariant set v f , there exists a subsequenceC

� 4 Ž � 4.of n denoted again by n and a bounded continuous function z on Rl l
such that

y t q n ª z t , l ª `Ž . Ž .l

Ž . Ž .uniformly on compact subsets of R. Function z also satisfies 3.1 and 3.5
Ž . Ž .for all t. Equation 3.5 and C2 then imply that y and z are differentiable

Ž .on R and their derivates can be obtained by differentiating 3.5 term by
term

jy1 jy1`
tyjt

y t s y c t y it c t y mt h s, y s dsŽ . Ž . Ž . Ž .Ž .˙ ˙Ý Ý Ł Hž / tysyjtis0, i/mjs1 ms0

jy1`

y c t y it h t y jt , y t y jt y h t y s y jt ,Ž . Ž .Ž . ŽÝ Łž /is0js0

y t y s y jt .Ž . .

It is sufficient to prove that y ª z in X as l ª `. We already know then 0l

convergence in C. Then the convergence in X follows from
< Ž . Ž . <max y n q t y z t ª 0, l ª `. From the above series represen-˙ ˙yr F t F 0 l

tations of the derivatives of y and z one obtains

y n q t y z tŽ . Ž .˙ ˙l

jy1 jy1`

s y c t y it c t y mtŽ . Ž .˙Ý Ý Łž /is0, i/mjs1 ms0
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tyjt
= h s, y n q s y h s, z s dsŽ . Ž .Ž .Ž .H l

tysyjt

jy1`

y c t y it h t y jt , y n q t y jtŽ . Ž .Ž .Ý Ł lž /is0js0

yh t y s y jt , y n q t y s y jtŽ .Ž .l

yh t y jt , z t y jt q h t y s y jt , z t y s y jt .Ž . Ž .Ž . Ž .
Ž . Ž .Hence from the uniform convergence y n q t ª z t on compact subsetsl

< Ž . Ž . <of R, we can get that max y n q t y z t ª 0, l ª `. This˙ ˙yr F t F 0 l
completes the proof of the Claim.

� 4By the Claim, the set A s Cl y : n g Z , where the closure is taken inn
Ž .X, is compact in X. We have J 0, a s 0 for all a g A. In the same way as

in the proof of Lemma 3.2, for any a g OO there is b g NN such that
Ž . Ž .Ž .b 4 a and J 0, b ) 0 is as small as we want. Then x 0, b t ) 0 andm

m t Ž .Ž .e x 0, b t is increasing for sufficiently large t. Then for large t, one gets
Ž .Ž .Ž Ž . mt . Ž Ž ..x 0, b t 1 y c t e - J t, x 0, b . Similarly, there is a d g NN sucht

Ž .Ž .Ž Ž . mt . Ž Ž ..that d < a and x 0, d t 1 y c t e ) J t, x 0, d for all large t andm t
Ž .J 0, d - 0 is as close to zero as we want.

Now fix an e ) 0. For any given a g A there exist d , b g NN and t G 0a

such that d < a < b and, applying Theorems 2.1 and 2.2,m m

ye F x 0, d t - x 0, a t - x 0, b t - e , t G t .Ž . Ž . Ž . Ž . Ž . Ž . a

There is an open ball U centered at f in X such that d < U < b anda m a m

x 0, n t - e , n g U , t G t .Ž . Ž . a a

� 4The set U : a g A gives an open cover of A. A being compact, there is aa

� 4finite subcover U , . . . , U . Let T s max t , . . . , t . Thena a a a1 N 1 N

x 0, a t - e , a g A , t G TŽ . Ž .
< Ž . <follows. Applying this for a s y , n s 1, 2, . . . , we obtain that y t - eyn

for all t g R. Since e ) 0 was arbitrary, y s 0 can be obtained. Conse-
Ž .quently, c s y s 0 and this means that v f contains only the zero0 C

function. The proof is complete.

Remark 3.1. We conclude this paper with the following comments:

Ž . Ž .1 More general linear neutral operators D t, f , as discussed in
w x11 , can be allowed in the above results.

Ž . Ž .2 The right hand side f t, f can also be more general than in Eq.
Ž .3.1 . The only crucial assumption is that the equation has a first integral.

Ž .3 It would be interesting to get extensions of the above results for
Žsystems such as those arising from compartmental systems see, e.g.,
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w x.7, 8, 18 . In this direction, we mention that the monotonicity results of
Ž .Section 2 have been extended to systems of non-neutral functional

w xdifferential equations by Smith and Thieme in 23 .
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