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ABSTRACT 

A model motivated by the earlier work of J. D. Murray and D. Stirzaker is 
proposed to describe the dynamics of predator-prey communities over a patchy 
environment. The model is a system of delay differential equations. It is shown that 
if only one time lag is incorporated into the model, then a branch of spatially 
homogeneous periodic solutions occur as a primary Hopf bifurcation. However, if 
two time lags are used to measure different delayed factors in the process of growth, 
decay, and predator consumption of the prey population, then stable spatially 
heterogeneous periodic solutions (discrete waves or phase-locked oscillations) may 
exist. The utilized method is based on center manifold, normal form, and equivariant 
Hopf bifurcation theory. 

1. INTRODUCTION 

In [1] Murray showed that the coupling of continuous diffusion in 
space with time delay interacting population models can give rise to 
stable spatial and temporal fluctuations. In particular, for the proposed 
nonlinear scalar diffusion time delay equation, a spatial and temporal 
oscillatory traveling wave solution was obtained in which the amplitude 
depends only on the parameters of the equations. 

The purpose of this paper is to demonstrate that the coupling of 
discrete diffusion in a patchy environment with a time delay interacting 
population model can also exhibit stable discrete waves, a special type 
of temporal periodic solutions representing oscillations in which the 
population in each patch oscillates like the others but in a different 
phase. We will show that in order to obtain stable spatially heteroge- 
neous discrete waves, two time lags have to be incorporated into the 
model describing the dynamics of the population. 

Time lags have been employed to model biological features such as 
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regeneration time and reproductive lags. It is often biologically unrealis- 
tic to assume that the growth rate of the population depends on just one 
point in past time. For example, in the growth of an herbivore popula- 
tion grazing on vegetation, which was one of the motivations for [1], the 
time lag required for the reaction of the predator population to changes 
in the available amount of vegetation on which it depends is usually 
different from the time taken for the vegetation to recover. 

On the other hand, much research has been devoted to the mathe- 
matical analysis of model equations for the growth of populations 
dispersing among patches in a heterogeneous environment in order to 
understand the effect of environmental changes on the growth of 
populations. We refer to [1-24] and references therein. 

Delay differential equations with two time lags have been the subject 
of much literature. We refer to [24-30] and references therein. How- 
ever, except for [24], where two lags come, respectively, from the 
self-regulating mechanism and the dispersion process, little has been 
done regarding stable spatially heterogeneous discrete waves for a 
predator-prey community. It should also be mentioned that the exis- 
tence of stable spatially heterogeneous Hopf bifurcations has been 
obtained for a scalar reaction-diffusion equation with two delays in 
[301. 

In this paper, we propose a system of delay differential equations 
with two time lags to model the growth of a predator-prey community 
over a ring of patches. We assume that the dynamics of the prey 
population in each patch is essentially governed by Murray's equation 
[1] and that the dispersion of the prey population occurs between 
nearest neighborhoods and is proportional to the difference between 
the densities of the populations. Our investigation indicates that intro- 
ducing two time lags in the proposed model is not only biologically 
realistic but also mathematically necessary to observe stable spatially 
heterogeneous periodic solutions. In fact, we will show that if two delays 
are identical, then we will always obtain spatially homogeneous oscilla- 
tions as the primary Hopf bifurcation. However, if two delays are 
different, then we can apply the center manifold, normal form, and 
equivariant Hopf bifurcation theory to show that stable spatially hetero- 
geneous discrete waves may exist in some situations. 

The rest of this paper is organized as follows. The model is described 
in Section 2 and is analyzed in Sections 3 (a single delay) and 4 (two 
time lags). Some remarks and discussions are provided in Section 5. 

2. DISCRETE DIFFUSIONAL TIME DELAY MODEL 

Consider a system consisting of a predator-prey interacting commu- 
nity distributed over a ring of n patches connected by dispersion 
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between adjacent patches. In what follows, we will always, as an illustra- 
tive example of the considered predator-prey interaction, keep in mind 
herbivore vegetation and, in particular, planktonic populations in the 
sea in which herbivorous copepods live off phytoplankton. We refer to 
[1, 21] for more details about experimental observations and biological 
motivations of such a predator-prey interaction. 

Following Murray [1] and Stirzaker [21], we assume that in each 
patch the population ui ( t )  of the prey at a time t satisfies, in the 
absence of predators, 

(ti( t )  = h ( u i (  t - ~ ' ) ) ,  

where ~- > 0 is a constant. With herbivore vegetation in mind, h ( u i ( t  - 
z)) represents the growth and decay process of the population; z is the 
time taken for the vegetation to regenerate. 

We also assume that predator consumption depends only on their 
capacity b > 0 for the prey. Therefore, without dispersion from other 
patches, the equation for u i ( t )  in the predator-prey situation takes the 
form 

(ti( t ) = h (  u i (  t - "r ) ) - b g i (  t ) ,  

where K i is the number of predators in the patch at time t. The number 
of predators depends on the amount of food available to their offspring, 
so the total predator population also depends on the prey population at 
an earlier time. K i ( t )  is usually a rather complicated function of the 
prey population at a previous time. We assume, for simplicity, that 

b K i ( t )  = m ( u i ( t  - z * ) ) ,  

where z* is of the order of the regeneration time of the vegetation. 
Finally, we assume that the dispersion occurs between adjacent 

patches and is proportional to the difference of the populations in these 
patches with a proportionality constant p > 0 measuring the strength of 
the dispersion. Therefore, the equation for u ( t ) =  ( u l ( t )  . . . .  , un ( t ) )  r in 
the situation of dispersion and predator-prey interaction becomes 

tJi( t )  = h ( u i (  t - r )  ) -  m ( u i (  t - T*) ) +  p[u i+ l( t ) -  2u i (  t ) + u i_ l (  t)] , 
(2.1) 

where i = 1, 2 .....  n (mod n), t >/0. 
As h ( u )  must take into account crowding effects, for large u~ it must 

be a decreasing function. So, we expect that the isolated subsystem 

fti( t ) = h ( u i (  t - r )  ) - m ( u i (  t - "c*) ) 
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for the prey population without dispersion has a positive equilibrium K 
given by 

h ( K ) - m ( K )  = 0  

and 

h ' ( K )  <0,  m ' ( K )  > 0. (2.2) 

This gives a spatially homogeneous equilibrium K* = ( K  ..... K) r for 
system (2.1). Our primary goal is to look for Hopf bifurcation from this 
equilibrium. In what follows, we will also follow [1, 21] and assume that 
h and m are antisymmetric about the equilibrium K, resulting in 

h " ( K )  = m"(K)  =0.  (2.3) 

3. SPATIALLY HOMOGENEOUS HOPF BIFURCATIONS: 
SINGLE DELAY 

In this section we consider (2.1) with a single delay z. That is, we 
assume that z = z*. Regarding ~- as the parameter, we will show that 
the primary Hopf bifurcation consists of spatially homogeneous periodic 
solutions whose stability is determined by the sign of h " ( K ) -  m"(K) .  

The linearization of (2.1) about the spatially homogeneous equilib- 
rium K* = (K,. . . ,  K) T is 

where 

7.i(t) = -rz i ( t  - T) + p[zi+l( t  ) + z i_ 1(/) - 2 z i ( t ) ] ,  

r = - h ' ( K )  + m ' ( K )  > 0. (3.1) 

Normalizing the delay by yi(t) = zi(rt), t ~ ~, we get 

yi(t)  = -r"ryi(t - 1) + pT[yi+ l(t) + Yi  , ( t )  - 2 y i ( t ) ] .  

It is well known (see [31]) that the discrete Laplacian A :Rn~  R n 
defined by 

( A y ) j = y j + l + Y j _ l - - Z y  j, y ~ R " ; j ( m o d n ) ,  
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has eigenvalues - 4  sin2(Trj / n) with associated eigenvectors 

.27r .  .2rr  ] ..... 

Moreover ,  

[ (A+r 'ce -A) Id  - p r A ] v j = l A + m e - a + 4 p ' c s i n 2 - 7 - ] v  j. 

Therefore ,  the corresponding characteristic equat ion takes the form 

139 

1-I A + r'ce ~ + 4p'c sin 2 = 0. 
j=0 

(3.2) 

To  analyze the distribution of characteristic values, we need the follow- 
ing result regarding equat ion 

( z  + a)e ~ + b = 0, (3.3) 

where a >/0, b > 0 are given constants. 

LEMMA 3.1 

(i) All roots of  (3.3) have negative real parts if and only if b < ~ sin 
- a  cos ~:, where ~ is the root of  ~ = - a  tan ~ in (0, iT) if a 4= O, or 

~c = 7 r / 2  i f a=O.  
(ii) I f  a = 0 and 0 < b < ~r /2 ,  then every solution of  Equation (3.3) 

has a negative real part. 
(iii) I f  a = 0 and b > e l, then (3.3) has a root u(b)+ iv(b) that is 

continuous together with its first derivative in b and satisfies 0 < v( b ) < rr , 
v(Tr /2)  = 7r /2 ,  u (Tr /2)  = 0, u ' (T r /2 )  > 0, and u(b) > 0 for b > 7r/2. 

We refer  to [32] for  a detailed proof  of the above result. 
Applying L e m m a  3.1 to (3.2), we get 

THEOREM 3.2 

(i) I f  "c < 7  o = r / 2 r ,  then all characteristic values of  (3.2) have 
negative real pans. 

(ii) I f  ~- = %, then (3.2) has a pair of  purely imaginary characteristic 
values +_ i7r/2, and all other characteristic values have negative real pans. 

(iii) There exists e > 0 such that there is a characteristic value A(T) = 
u('c)+ iV(T) of  (3.2) that is continuous together with its first derivative in 
r ~ ('co - e, 7 o + e)  and satisfies 0 < v ( r )  < 7r, v(T o) = r r / 2 ,  u ( r  o) = 0, 
u' (%) > O, and U(T) > 0 for T ~ ('CO, r o + e). Moreover, for "c ~ ('co - e, 
T o + e), all other characteristic values have negative real pans. 
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Proof Applying Lemma 3.1 to (3.2) with 
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a = 4pr sin 2 7rj b = r~-, 
n ' 

we can easily obtain the above results provided we can show that 

rz < ~ sin ~ -4pz ( s inE-~  )cos ~ (3.4) 

if z < %, 1 ~ j ~< n -  1, and ~ ~ (0, 7r) is the only solution of ~: = - 4 p z  
sin 2 7rj/n tan ~. Note that (3.4) is equivalent to 

-4pr  sinZTrj / n 
rr  < cos ¢ = sin ~" 

Consequently, (3.4) is true as the solution of ¢ = - 4 p r  sinZ(Trj/nr) 
tan ~ belongs to (7r/2,  7r), where ~/(s in ~) > 7r /2  = r0r. • 

By using the standard Hopf  bifurcation theorem for functional differ- 
ential equations (see [32]), we can claim that near r 0 = rc/2r there is a 
Hopf  bifurcation of periodic solutions. As the purely imaginary charac- 
teristic value corresponds to the zero of the first factor of (3.2), each 
periodic solution obtained from the above Hopf  bifurcation theorem is 
spatially homogeneous (or synchronous), that is, u i_ l(t)= ui(t) for all 
i(mod n) and for all t ~ R, according to the general Hopf  symmetric 
bifurcation theorem in [33, 34], which represents an analog for func- 
tional differential equations of the well-known Golubitsky-Stewart Hopf  
bifurcation theorem for ordinary differential equations in the presence 
of symmetry (see [31]). For the model equation (2.1), the spatial homo- 
geneity of the periodic solution in the primary Hopf  bifurcation is 
obvious. In fact, z 0 is a Hopf  bifurcation value of the scalar functional 
differential equation 

• (t) = h ( w ( t -  ~')) - m ( w ( t -  T)),  

and hence a Hopf  bifurcation of periodic solution w(t) occurs near 
= %. This periodic solution then gives rise to a spatially homogeneous 

periodic solution (w(t) . . . . .  w(t)) r of (2.1) due to the internal D n symme- 
try. 

We now investigate the stability, direction of bifurcation, periods, 
and asymptotic forms of the small-amplitude periodic solutions bifurcat- 
ing from the equilibrium (K . . . . .  K)  r. We will use the algorithm in the 
monograph of Hassard et al. [35] and assume n = 3 for the sake of 
simplicity. 
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THEOREM 3.3 

Near r = r o = rr / 2 r ,  system (2.1) has a Hopf  bifurcation of  spatially 
homogeneous (or synchronous) periodic solutions bifurcating from the 
equilibrium ( K  . . . . .  K )  r. I f  m ' ( K ) <  h" (K) ,  then the bifurcation takes 
place for r < r o and the bifurcating periodic solutions are unstable. I f  
m " ( K )  > h ' ( K ) ,  then the bifurcation takes place for r > r o and the 
bifurcating periodic solutions are orbitally asymptotically stable. Moreover, 
we have the following representation for the periodic solution u and the 
periods T: 

T 7"g 
u( t ,  r ( e ) )  = K* + 2e(1 ,  1, 1) cos 2 r - -7~t  + O(E3) ,  

[ 3 b ( r r - 1 )  ] 
T ( e ) = 4 r ( e )  1-  r~-~(1+#274 ) ~: qt- 0(83) , 

3brr2 e 2 + O ( e  3) 
r ( e ) = r o -  2r--- g- 

r = - h ' ( K )  + m ' ( K )  > O, 

b = - h " (  K ) + m "( K ). 

Proof. We consider (2.1) when h and m are replaced by their 
Taylor expansions up to the third order. Making a change of variables 
Xi(t) = Ui(~'t)- K, we get 

k i ( t )  = - r r x i ( t  - 1) - brxa( t  - 1) 

+ p r [ x i + l ( t ) + x i _ l ( t ) - 2 x i ( t ) ] ,  i (mod n) .  (3.5) 

Let r = % +/~. We then have 

= rr - b 7r /z)xa(t  _ 1) fCi(t) - -r(~TWtz)Xi( t  1 ) - - ( ~ - 7 +  

The linearization of (3.5) is 

i t ( t )  = ft_~ d*l( O, t*)x( t  + O) (3.6) 
1 
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with 
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1 i) dr/(O, t z ) = p  ~7+tz  1 - 2  6(O)dO 
1 1 - 

- 7 + rl~ l d 6 ( O  + l ) d O ,  

where 6 is the Dirac 6 function. The generator of the semigroup 
defined by (3.6) is, see [32, 35], 

{ ~ ( o ) ,  

A( /z) ~o = f_°la,7( o, ~)~(o), 

its adjoint operator is defined by 

A*(~).(~)= f 0, /z) c ~ ( - 0 ) ,  

and the associated bilinear form is 

- 1 ~ < 0 < 0 ,  

0 =0 ;  

0 < s ~ < l ,  

s =0 ;  

<., ~> ~(o)~(o) f_o fo o = - -~(,~-O)dn(O,/z)~o(tj)d,~. 
1 

Also note that A(0) = + i 7r /2  is an eigenvalue of A(0) with the eigen- 
vector q(O) = (1, 1, 1) r e i~/2)°, -1  ~< 0 ~< 0, and A(0) is an eigenvalue of 
A*(0) with the eigenvector q~'(s)=(1,  1, 1)e i~È/2)s, 0 ~<s ~<1. We can 
easily verify that 

Hence, if we let 

(q~, q)  _ 3 (1+  7r2/4) 
1 -  i7r/2 

then 

1 - ( 7 r / 2 ) i  (1 1 ,1 )e  i(~/2)s, 0~<s~<l,  
q*(s) 3 ( 1 + 7 r 2 / 4 )  , 

( q * , q )  = 1. 
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We now formally rewrite (3.5) as 
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= A ( u ) x ,  + R O , ) x ,  

with 

R( /z)  

0 

-b (~ /2r  + / z ) ( q ~ ( - 1 ) ,  q ~ ( - 1 ) ,  ¢ ~ ( - 1 ) )  r, 

- 1 4 0 < 0 ,  

0 = 0 .  

Carrying out the algorithm in [35, pp. 183-190] with to o = rr /2 ,  we get 
the bifurcating periodic solutions 

x(t, ~(6.))  = 26. Re [q(O)e i'°'] + 26. 2 Re q(0) 

[ g2° ezi'°')' gH g°z ] × ~ iwo 6itoo e-zi°~°t 

+6 .2 Re [ W20( O)e 2i°°t q- Wll(O)] q- O(83) ,  

whose periods are given by 

T( 6.) = 2--~ [l +r26.2 + 0 ( 6 . 3 ) ] ,  
6O 0 

where 

=  ,6.2 + o ( 6 . 3 ) ,  

~ 2 - - - - 1  Jim Cl(O ) + ix 2 to'(O)] 
-- toO 

c1(0) = 2 @  o g2ogll -21g1112 [g°2123 

g2o = gll = go2 = O, W2o = Wll = O, 

_ 3bTr Ir + i), 
g21 r ( 1+~- 2 /4 )  ( 7  

r Re c1(0 ) 
to'(O) 1 + 7r2/4 ' /x2 a '(0~---)- ' 

d ?'77" 
a ' (O) = ~--~# Re h.(/x)]u=o - 2(1 + 7r2/4) . 

g21 + - -  
2 '  
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The calculation is straightforward but tedious and thus is omitted. It is 
known that the direction of bifurcation is determined by ~/,2 and the 
stability of bifurcating periodic solutions is determined by /32 = 
2 Re Cl(0) .  Therefore, the conclusion follows. • 

It is natural to see that the parameter p, measuring the strength of 
dispersion between patches, does not appear in the representations of 
bifurcating periodic solutions and their periods, because each spatially 
homogeneous periodic solution of (2.1) corresponds to a periodic solu- 
tion of the scalar equation &(t) = h( to ( t  - z ) ) -  m ( t o ( t  - r ) ) .  Theorem 
3.3 also indicates that if m ' ( k )  > h"(k)  and p is given, then there exists 
e o = e o ( p )  > 0 such that for all ~- = z(e)  with e ~ (0, ~0(P)) the bifur- 
cating periodic solution of (2.1) is asymptotically stable. The depen- 
dence of e 0 on p, however, suggests that for a fixed small e > 0 it is 
possible to destabilize this periodic solution by varying p. We will 
address this problem in a future paper. 

4. SPATIALLY H E T E R O G E N E O U S  H O P F  BIFURCATIONS:  
TWO DELAYS 

The purpose of this section is to show that system (2.1) with two 
delays may exhibit primary Hopf bifurcation of stable spatially hetero- 
geneous periodic solutions. Again, for simplicity, we assume n = 3, 
though our method can be applied to general situations. 

Employing the same notations as those of Section 3, we can verify 
that the linearization of (2.1) about the equilibrium K *  = ( K  . . . .  , K )  r is 

~.i( t ) = --rotzi(  t -- 7") -- r /3zi(  t -- "r* ) 

+ p [ z i + , ( t ) + z i _ , ( t ) - - Z z i ( t ) ] ,  i ( m o d n ) , t > ~ O ,  (4.1) 

where r = - h ' ( k ) +  m ' ( k ) ,  a = - h ' ( k ) / r ,  and /3 = m ' ( k ) / r .  Normaliz- 
ing one of the delays (r)  and renaming r*, we can assume that ~- = 1 
and ~-* >/1. 

Let A denote the generator of the semigroup generated by (4.1). 
Then )t is an eigenvalue of A if and only if 

I - I  [ h + a r e - ~ + / 3 r e - A ' * + 4 P  sin2 = 0 .  
j=0 

We make the following assumption. 

ASSUMPTION 1 

A l l  roots o f  h + a r e  - x + ~3re - ~*  = 0 have  negative real parts ,  a n d  there 
exists Po > 0 so that  A+ a r e  -~ + ~3re - ~ *  +3P0 = 0 has a pa i r  o f  pure ly  
imaginary solut ions  +_ iu 1 a n d  all o ther  solut ions  have  negative real parts .  
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General sufficient conditions to guarantee Assumption 1 seem difficult 
to obtain. However, we will provide some numerical results to support 
this assumption. 

Note that the multiplicity of each of the eigenvalues +iv 1 is 2. Under 
Assumption 1, a theorem in [33, 34] guarantees that near p = P0, system 
(2.1) has a Hopf  bifurcation of periodic solutions satisfying ui ( t )= 
u i - i 0 -  T / n ) ,  i(mod n), where t ~ R and T is the period of u( t )=  
(Ul(t) . . . . .  un(t)) r. These periodic solutions are clearly spatially hetero- 
geneous: the oscillations of prey populations in different patches are in 
different phases. In what follows, we call such periodic solutions dis- 
crete waves or phase-locked oscillations, following the work of Alexan- 
der and Auchmuty [36] and the monograph [31]. 

Our next goal is to develop an algorithm for determining the stability 
of discrete waves. Our approach is to reduce the semiflow of solutions 
of (2.1) to its center manifold (four-dimensional) and then appeal to the 
equivariant normal form of [31] for four-dimensional ordinary differen- 
tial equations equivariant under the D n action. 

Note that the eigenvector of A corresponding to iv 1 is (1, ~, 
~2)rei"'°, - r *  <~ 0 ~ 0, where ~ = e i 2rr /3 .  It can be easily verified that 

= (~1, ~2, ~3, ~°4) is a basis for the generalized eigenspace tz,,,(A) of 
A associated with the eigenvalue iv I (of multiplicity 2), where 

t 1 1)T qh = 1, 2 '  2 cosv lO+  O, 2 ' 2 sinvlO' 

¢2 = 1, 2 '  s i n v l 0 +  0, 2 ' 2 c ° sv l0 '  

I 11)T ( 
~D 3 = 1, ~, ~ c o s  1310 "1- 0 ,  2 ' 2 s i n  1J 1 0 ,  

t l l)T 
~I = 1, 2 '  2 s i n v l 0 +  0, 2 ' 2 c°svl0" 

Similarly, ~ *  = (~O~, ~0~', ~ ' ,  ~4") r is a basis for the formal adjoint of A 
relative to the bilinear form 

~,, ~)= , {o) ,~o)-  f° fo%~ ¢ - o)[d~ e)],¢ t)dt,  
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where 

q,~'-- 1, 2 '  2 cosy  t s -  0, 2 ' 2 s inv is, 

( 1 1 t ( ~ ~) ~0~ '=-  1, 2 '  2 s i n v l s +  0, 2 ' 2 c°sv l s '  

( ~ 1 )  ( ~ ) s i n v ,  s ~0~'= 1, 2 '  2 cosy  i s -  0, 2 ' - - T  

( 1 1 )  (~ ~) 
q 6 * = -  1, 2 '  2 sin vls + 0, 2 ' 2 c°sv l s '  

and 

- 2  1 1] 
d r /=  Po 1 - 2 1 

1 1 - 2  

x6(O)dO-trrI6(O+l)dO-rl316(O+r*)dO, 0 ~ [ - r * , O ] .  

By direct calculations, we have 

o~] 
('I'*' * )  = [A o 

where 

3 ~r(acosv~+~z*cosvff*) ~r(asinv~+flz*sinvlz*) ] 
A = ~r(asinv 1 + flz* sin vff*) -~+~r(acosvl+~z*cosvff* ) 

Hence 

,i, = (,i,*, . ) - ' ( q , ; ~ ,  ~0f, ~0j'. #,4") 

is a basis of tzi~(A*) and (W, ~ ) =  ld. Let 

3 M= [ -7+~r(acosv  I + ~z*cosvff*)] (detA) 1, 

N = [ -~-r( a sin v~ +/3~* sin v~r*)] (detA) -~ 
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Then we have 

( (=~) 01 = Mcosvls- Nsinvls, --~- +--~-N cosy  1 

N +(~=+~-)sinv, s, t 
( ~ ~) ) + - - - ~ - M +  ~- sinvls , 

2 2 N cos v~s 

N Ncosvls + Msinvls, ( - T  _ _~.)cos vls 

M + --~+-%)sin,,s, (T=- ~ -~)cosvlsN 

t = ~ )  ) + 2 ~ - N  s inv l s  , 

~b3 = (Mcosvls - Nsin vls,( 2 2 N cosv~s 

+ - - ~ - - M + - ~ -  sinvls,  ~ - + - - ~ - N  cosy 1 

+ ( v~ __~_M + N _~_)sin v ls ) ,  

~b 4 (Ncosvts v~ N = +Msinvls,(--~-M-~)cosvls 

+ 2 T N sinvls '  _ ~ N)cosv~ s ~ j - -M-~  

t = ~ )  ) + - ~ -  +- -~- -N sinvls . 

147 

u, - K* = qb(qr, u , -  K*) + g ( ~ ( q r ,  ut _ K*)) .  

The center manifold theory ensures that there exists a smooth func- 
tional g : /z i , , (A)~  C ( [ - r * ,  0]; [R n) with g(0) = 0, Dg(O) = 0 and such 
that if u(t) is a solution on the center manifold then 
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Moreover ,  if we let 

y ( t ) = ( ~ , u t - K * ) e R  4, 

then y ( t )  satisfies the following system of  ordinary differential  equa-  
tions: 

[ (21 ) ~(t)=By(t)+~(O) (P-Po)  1 - 2  u(t) 
1 1 - 

[ h ( u l ( t - 1 ) ) - m ( u l ( t - r * ) ) + a r [ u l ( t - 1 ) - K ] + f l r [ u l ( t - ' r * ) - K ]  ) ]  
+lh(u2(t--1))--m(uE(t--T*))+ar[u2(t--1)--K]+flr[u2(t--r*) - K ]  , 

h(u3(t - 1 ) ) -  m(u3(t - "r*))+ ar[u3(t - 1 ) -  K ] +  flr[tt3(t- r*)-  K] 

where  

[i vl00 0 o] B =  0 0 - " 

0 v 1 

Af te r  some  manipulat ions ,  we get 

~ ( t )  = A l y ( t  ) + * ( 0 )  

- a * b u ~ 3 ( t  - 1) - f l *bu~3( t  - ~*) 

- a * b u ~ 3 ( t  - 1) - f l *bu~3( t  - 7*)  

-- ot*bu~3( t - 1) - f l*bu~3(  t - ~'*) 

+ O ( [ p  - Pollyl 2) + O(ly14),  

where  

Al= 

- ~ M ( p -  PO) -Vl + ~N(p-  PO) - ~ M ( p -  Po) 
v l - ~ N ( p -  po) - ~ M ( p -  po) - ~ N ( p -  po) 

-~M(p - Po) -9N(p - Po) -9M(p - Po) 
-9N(p - Po) 9 M(p -  Po) 01- 9N(p - Po) 

- ~ N ( p -  Po) ] 

~M(p - Po) I 
- vl+9N(p -po)/' 

-~M(p - PO) J 

b = m"(K) -  h " ( k ) ,  a *  = - h'(k_____~)b ' ~ ,=m"~k) ,  

and 

( u ~ ( t - j ) , u ~ ( t - j ) , u ~ ( t - j ) ) r = d P ( - j ) y ( t ) ,  j = l , v * .  
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It can be easily shown that A 1 has two double eigenvalues given by 

/~1,2 = - 9 M (  P - Po) + ½(81( p - po)  2 M 2 -4v , [v , -9M(  p - po ) ]}  '/2. 

Let 

PQ= 

0 0 0 2 ] 

l 
MI M2 M3 M4 

- -  M 3 - M 4 - M 1 - M e ' 

0 2 0 0 

where  

m I --- 
18(p  -Po)MC 

8 1 ( p - p o ) Z ( M  2 - N  2 ) - 4 v  l [v  1 - 9 N ( p - p o ) ]  ' 

m 2 = 
1 8 ( p -  Po)N[2v , -9 (p -  P o ) N ]  

81( p - Po )2( M 2 _ N 2) _ 4v, Iv, - 9N(  p - Po)]  ' 

m 3 = 

2[2v , -9N(p-po)]C 

81( p - po)2( M 2 - N 2) - 4v, [v, - 9N(  p - Po)]  ' 

= 

162( p - po)2MN 

81( p - po)2( M 2 - N 2) - 4v, [v, - 9N(  p - Po)]  ' 

C= (4v l[v l -9(p-p°)N]-81(p-P°)ZMZ}a/2  

2 

Then  

(PQ)-IA1PQ= A : =  

- 9 ( p - p o ) M  C 0 0 ] 
-C - 9 ( p - p o ) M  0 0 l 0 0 - 9 ( p - p o ) M  C " 
0 0 -C - 9 ( p - p o ) M  

Making a change of  variable, 

y = PQz, (4.2) 
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we get 

i(t) = h(t) +(PQ)-‘T(0) 

D. KOH ET AL. 

(4.3) 

A straightforward but tedious calculation leads to 

(PQ)F”V(O)(Mj - M;) 

-MM*+N (M-\J~;N)M*+&M-N (M+fiN)M*-&M-N 

I(M12yMI -M,(~-$N;+M3(++$N) +(;sN;++$N) 

= MM,-MM, -M,(f-$N)+M,($+~N) -M,(F+$N)+&f,($-$N) 

-MM*+N -fihf-N+(~+fi~)~* JL;M-N+(M-JN)M* 

2 4 4 

and M* = A4,iV4 - M,M,. 
According to [31], the equivariant norm form of (4.3) to third order is 

i(t) = Az( t) + a,( 2; + 2; + 23’ + 2?)2( t) 

‘z:+z; 0 0 0 

0 0 0 
+ bll 

2: + 2; 
0 0 23’ + 24’ 0 

0 0 0 2; + z4’ 

which can be expressed in its polar form 

z(t), (4.4) 

i,=-4M(p-po)‘,+[a,(r:+r,2)+bor22]r,, 

i,=-qM(p-p,)r,+[a,(r:+r,2)+b0122]r2, 

$I= c, p2 = c. 
(4.5) 
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Comparing the coefficients of z~z 2 and zZ3z~ between the first equation 
of (4.3) and (4.4), we get 

-b (  a*a 1 + fl*a~.) 
a I + b o = M 2 _ M s , 

3 
(4.6) 

-b (  a*c I + fl*c~,) 
al = M2 - M23 ' 

where 

a i = ½[ M* - N 1[ M 3 cos jv, + M, sin jr,  13 
+ ¼[ M M * - v ~ N M *  + v ~ M -  N] 

[( f ~  1 )cos jr1 1 ]3 × - - - ~ - M I + - ~ M  3 + ( ~ M 1 - ~ - ~ - M 3 ) s i n j v l  

+ ¼ [ M M * + v ~ N M * - f 3 M - N ]  

× --~--M I + -~M 3 cos j r  1 + ~ M  1 + - ~ M  3 sin jr1 , 

or 

r .2 = 9 M ( p  - po) /2 (2a l  + b,,) 

, - 9 M ( M  2 -  M 2) 
r*~= 2b[ a(  ai + c,) + fl( a~, + c~,) ] ( P - P " ) "  (4.7) 

c j = - 3 [  - MM* + N ][ M 1 cos jvl + M 3 sin jv  1 ]2[ M3 cos jv  1 + M 1 sin jv~ ] 

+ ~ [ ( M - f 3 N ) M *  + f 3 M -  N] 

X [ ( M  1 - V / - 3 M 3 ) c o s j v , - ( f 3 M , -  m3)sinjvl] 2 

X [ - (!/~-m 1 - m3)cos jy I + ( m l - I / 3 m 3 ) s i n j v l ]  

+ ~[( M + v ~ N ) M * - v / - f  M -  N] 

× [ ( M I  +v/3M3)cosjv, + (7~-M 1 + M3)sinjvl] 2 

× [(v~-M, + M3)cosjv 1 + ( M ,  + f3M3)s in j v , ] ,  

w i t h j = l o r z * .  
It can be easily verified that the amplitude equation in system (4.5) 

has a nontrivial equilibrium (r*, r*) with 
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The  eigenvalues of  the l inearization of  (4.5) at (r*,  r*) are given by 

A 1 = 2r*2(2a l  + bo) ,  A2 = 2r*2bo" 

Consequent ly ,  we have the following conclusion: 

THEOREM 4.1 

Assume that Assumption 1 is satisfied. Then system (2.1) has a Hopf 
bifurcation of  discrete waves. For the equivariant normal form (4.4) of 
(2.1) up to third order, the bifurcation takes place for p > Po if 

M( M? - M~) 
A , : = b [ o t ( a l + C l ) + / 3 ( a , . + c , . ) ]  < 0 ,  

or for p < Po if A~ > O. Moreover, the discrete waves are asymptotically 
stable if 

b[ a (  a 1+c l )+ /3 (a¢ .  + c ¢ . ) ]  
A 2 := M1 z _ M32 > 0, 

b[ ct(a 1 + c,) +/3(a¢. - c¢.)] 
A3 := M? - M# > o 

and unstable if at least one of  A z and A 3 is negative. 

The  conclusion about  the normal  fo rm (4.4) gives us some  insight 
into the dynamics  of  the full system (2.1), which can be verif ied with 
numerical  s imulat ions at appropr ia t e  p a r a m e t e r  values. But  it remains  
an interest ing open  p rob lem to de te rmine  if the normal  fo rm (4.4) 
captures  all o f  the essential  dynamics  of  the full system. 

T h e  analysis of  the characteris t ic  equa t ion  of  (4.1) is very compli-  
cated,  and the comple te  descript ion of  the distr ibution of  characteris t ic  
values is still r emote .  However ,  we are able to use the Maple  p rog ram 
to carry out  some  numerical  simulations.  In part icular ,  for  o~ = 
0.7333333333, /3 = 0.2666666666, ~- = 1, ~-* = 3.05, P0 = 0.1068436529, 
r = 3.1591596998, m ' ( k )  = -0.2666666666,  h"(k)  = 0.7333333333, we 
can also verify that  Assumpt ion  1 is satisfied and 

ot*( a 1 + c,) + fl*( a~ . + c~ . )  = 0.0519500609, 

t~*(a~ - cl) + /3" (a7 .  - c7 ,  ) = 0.07341308855, 

M = -0.04963129536,  M 1 = 0.05506232503, M 3 = -0.9438832338.  
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Therefore, the bifurcation of discrete waves takes place for p > P0, and 
the discrete waves are asymptotically stable. 

5. DISCUSSION 

Multiple time lags and dispersion occur in many biological processes, 
and the mathematical analysis of the model equations is usually very 
complicated. Our focus in this paper is on a model motivated by the 
earlier work of Murray [1] and describing the dynamics of predator-prey 
communities over a ring of patches. In the case of a single delay, we 
have shown that the primary Hopf bifurcation consists of spatially 
homogeneous periodic solutions that represent synchronous oscillations 
in the patchy environment. The bifurcation direction and stability have 
also been studied, but the global existence of synchronous oscillations 
and their stability analysis remain an open problem. In the case of two 
time lags, we have developed an algorithm to determine the existence of 
discrete waves and their stability. Computer simulations show that 
stable discrete waves representing spatially heterogeneous oscillations 
or phase-locked oscillations may occur, and consequently the presence 
of multiple time lags may give rise to spatial heterogeneity in a system 
of functional differential equations. Some results about characteristic 
values of a system of delay differential equations with two delays can be 
found in the literature, but a complete description still remains a 
challenging problem. 

The ring structure of the patchy environment greatly simplifies our 
mathematical analysis and enables us to apply some recent results in 
[33, 34] for symmetric Hopf bifurcation theory of functional differential 
equations and the equivariant normal form in [31] for ordinary differen- 
tial equations. This is clearly a simplification of the real situation, and 
the more general structure of the patchy environment should be ad- 
dressed in the future. 

Finally, we emphasize that a more realistic model should include 
distributed delays and take the form 

= t i _ f t  _ a i ( t  ) £ K,(t-s)h(ui(s))ds _ K~(t s)m(ui(s))ds 

+ E oj,[uj( ,)-u,(t)] .  
j4~i 

Though our method can, in principle, be applied to the above system, 
the corresponding analysis can be quite difficult but should be pursued 
in the future. 
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