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In this paper, we derive a neutral difference-differential system with diffusion
which arises from a ring array of coupled lossless transmission lines. We investigate
the problem of self-sustained oscillations of the considered transmission lines and
apply a global Hopf bifurcation theorem to establish the existence of multiple large
amplitude phase-locked periodic solutions in the corresponding neutral system.
� 1996 Academic Press, Inc.

1. Introduction

In 1961, in their enlightening studies on distributed (nonlumped) trans-
mission line theory, Nagumo and Shimura [49] obtained a difference-dif-
ferential equation of neutral type and discussed the self-oscillation
phenomena in the transmission line. This work was later extended by
Shimura [55] to a lossless transmission line terminated with a tunnel diode
and a lumped parallel capacitor. Shortly after Nagumo and Shimura, on
basis of the studies on nonlinear mixed initial-boundary problems arising
from distributed transmission line theory [10, 48], a more general dif-
ference-differential equation of neutral type was derived independently by
Brayton [8, 9] and the self-sustained periodic solutions of small amplitude
were also proved to exist in transmission lines. The main idea used to
obtain such difference-differential equations is the reduction of classical
telegrapher's partial differential equation which describes the voltage and
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current changes in a transmission line by introducing the d'Alembert solu-
tion of the wave equation and using the boundary condition at terminals.
This idea goes back to at least as far as Abolinia and Mishkis [1, 2], where
they demonstrated the existence and uniqueness of solutions to a mixed
problem for hyperbolic systems by converting them to integral-functional
equations, with integral along characteristics.

Since then, the above derived neutral equation, we call it the LLTL
equation in the sequel, has been extensively investigated and many new
methods and new results have been developed. We refer to [16, 20, 28,
29, 35�37, 44, 57] for stability and instability considerations in LLTL
equation and to [8, 9, 39, 43, 49, 55, 65] for discussions of the exist-
ence of periodic solutions. On the other hand, several generalizations of
LLTL equation were also presented in [13, 14, 43, 46]. In particular,
Cooke and Krumme [13] gave a systematic procedure for reducing trans-
imission line problems, which are described by linear partial differential
equations subject to certain nonlinear initial-boundary conditions, to initial
value problems for differential-difference or integral differential-difference
equations. It should be emphasized that it is the LLTL equation that has
motivated the theory, which was first systematically discussed by Hale
[28], for the D-type neutral functional differential equations (NFDEs).

Strictly speaking, a single transmission line as considered above is less
usuall than multiconductor line in applications. As an electric circuit, a self-
contained single transmission line is assumed to be removed far enough
from other lines so that it is not affected by any electrical changes occuring
in the latter. As soon as a second transmission line is placed close to the
first one the fields of the first line induce a voltage and a current on the
second. Capacitive coupling is then produced by the electric field and induc-
tive coupling results from the magnetic field. The classical applications of
telephone (or telegraph) line and high-voltage power transmission line are
often examples of coupling. The coupling phenomenon is also utilized in
practice to realize directional couplers and interdigital filters. Moreover, in
the modern high-speed integrated circuit (IC) technology, coupling among
a group of physically close transmission lines are very common and inter-
connects in high-density IC are usually treated as transmission lines. We
refer to [12, 23, 45, 52, 56, 60] and the references therein for the detailed
discussions on coupled electric circuits and transmission lines.

Motivated by Endo and Mori [19] and Winnerl et al. [64] we consider
in this paper a ring array of mutually coupled lossless transmission lines.
For simplicity, we assume the transmission lines are resistively coupled and
the capactive and inductive coupling among the system are neglected. We
also assume that each linked transmission line is identical and terminates
at each end by a lumped linear or nonlinear circuit element. By employing
telegrapher's equation at each line together with a coupling term in the
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initial-boundary condition, we derive a symmetric difference-differential
system of neutral type, which is equivalent to the original partial differential
equations governing the coupled lines. We believe this is the first time that
a diffusive system of neutral functional differential equations is derived. We
use a modified version of the local and global bifurcation theory developed
in [39] and [66] to study self-sustained oscillations and to prove the exist-
ence and multiplicity of phase-locked and synchronous periodic solutions.
Due to the global nature of the bifurcation theorem, comparing our results
with those of Shimura [55] and Brayton [8, 9] (for single transmission
line equations) the results on the existence of periodic solutions we shall
present are global in the sense that the parameter can be far away from the
local bifurcation value.

Since the self-sustained oscillation occurs in the lossless transmission
line, we may regard it as an electric oscillator. It should be noted that there
recently has been great interest in the study of coupled nonlinear
oscillators. For example, Alexander and Auchmuty [3] have considered
the global bifurcation of phase-locked oscillations in the coupled
brusselators and van del Pol oscillators. In their series of papers, Endo and
Mori [17�19] have discussed the mode analysis of one-dimensional and
two-dimensional multimode oscillators. As a mathematical model for slow-
wave electrical activity of the gastro-intestinal tract of humans and animals,
Allian and Linkens [4] have proposed a tubular structure which comprises
one-dimensional rings and two-dimensional arrays of interconnected non-
linear oscillators with third-power conductance characteristics. Similar
mathematical models for the electrical activity in humans and animals are
also postulated by Linkens et al. [42] and Sarna et al. [54], where a series
of simulated relaxation oscillators are resistively coupled as a chain. Other
problems related to coupled electric oscillators are addressed by Gollab
et al. [26] on periodicity and chaos and are systematically reviewed by
Grasman [25] on various applications.

This paper is now organized as follows. In Section 2, we use the standard
reduction procedure developed in [9, 13, 57] to derive the governing
diffusive neutral equations for resistively coupled lossless transmission
lines of a ring structure. To investigate the global bifurcation of the neutral
equations, three lemmas concerning the periods and upper and lower
bounds are prepared in Section 3. Section 4 is devoted to the global Hopf
bifurcation analysis and the existence of self-sustained phase-locked
and synchronous periodic solutions of large amplitudes is proved. In
Section 5, we draw some conclusions and discuss briefly some of the
implications of the lossless transmission line problem. Finally, in the
Appendix, we sketch a local and global Hopf bifurcation theory for
neutral equations of mixed type (with both delayed and advanced
arguments).

249oscillations in coupled transmission lines
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2. Coupled LLTL Diffusive Neutral Equations

Let N be a positive integer. We consider a ring of N mutually coupled
lossless transmission line (LLTL) networks which are interconnected by a
common resistor R. We assume all coupled LLTL networks are identical,
each of which is a uniformly distributed lossless transmission line with
series inductance Ls and parallel capacitance Cs per unit length of the line.

Figure 2.1

250 wu and xia



F
ile

:5
05

J
29

94
05

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:3

3
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

24
06

Si
gn

s:
14

83
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

To derive the network equations, let us take an x-axis in the direction of
the line, with two ends of the normalized line at x=0 and x=1. See
Fig. 2.1.

Let ik(x, t) denote the current flowing in the k th line at time t and dis-
tance x down the line and vk(x, t) denote the voltage across the line at t
and x. It is well-known [38, 45, 59] that the functions ik and vk obey the
following partial differential equations (Telegrapher's equation)

Ls
�ik

�t
=&

�vk

�x
(2.1)

Cs
�vk

�t
=&

�ik

�x
, k=1, 2, ..., N.

When these N networks are interconnected resistively in the way as shown
in Fig. 2.1, the middle lines have coupling terms from the preceeding and
succeeding lines, and at two ends x=0 and x=1, the line gives rise to the
boundary conditions

0=E&vk(0, t)&R0 ik(0, t)

&C
d
dt

vk(1, t)=&ik(1, t)+ f (vk(1, t))&(Ik&1&Ik) (2.2)

vk(1, t)&vk+1(1, t)=RIk(t)

where E is the constant dc dias voltage, f (vk(1, t)) is the current (V&I
characteristic) through the nonlinear resistor in the direction shown in
Fig. 2.1 and Ik is the network current coupling term.

Under equilibrium conditions, �ik ��x=�vk��x=0. We have ik(0, t)=
ik(1, t) and vk(0, t)=vk(1, t). Thus, Eq. (2.1) and (2.2) have the following
equilibrium equations

E&vk&R0 ik=0
(2.3)

ik= f (vk)&
1
R

(vk+1&2vk+vk&1).

We assume that (2.3) has a unique homogeneous solution (vk , ik)=
(v*, i*), for all 1�k�N. By changing variables, the equilibrium can be
shifted from (v*, i*) to (0, 0) and Eq. (2.1) and (2.2) reduce to

Ls
�ik

�t
=&

�vk

�x

Cs
�vk

�t
=&

�ik

�x

251oscillations in coupled transmission lines
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0=vk(0, t)+R0 ik(0, t)

&C
d
dt

vk(1, t)=&ik(1, t)+g~ (vk(1, t))&
1
R

(vk+1&2vk+vk&1)(1, t)

(2.4)

where g~ (vk)= f (vk+v*)& f (v*).
We now solve the partial differential equation (2.4). It is known [57, 59]

that there exists a unique solution (d 'Alembert solution) ik(x, t) and vk(x, t)
which are of the form

vk(x, t)= 1
2[,k(x&_t)+�k(x+_t)]

(2.5)
ik(x, t)=

1
2Z

[,k(x&_t)&�k(x+_t)]

where

_=
1

- LsCs

, Z=�Ls

Cs
(2.6)

are respectively the propagation velocity of waves and the characteristic
impedance of the line, and

,k # C1(&�, 1], �k # C1[0, �).

Let

,k1
(t)=,k(1&_t), ,k0

(t) =,k(&_t)

�k1
(t)=�k(1+_t), �k0

(t)=�k(_t)

and Vk(t)=vk(1, t). We have from (2.5) that

,k1
(t)=Vk(t)+Zik(1, t), ,k0

(t) =vk(0, t)+Zik(0, t)
(2.7)

�k1
(t)=Vk(t)&Zik(1, t), �k0

(t)=vk(0, t)&Zik(0, t).

Note that ,k1
(t)=,k0

(t&1�_) and �k1
(t)=�k0

(t+1�_). By (2.7) and the
first boundary condition in (2.4), we get

Vk(t)+Zik(1, t)=&q�k1
(t&r)

(2.8)
Vk(t)&Zik(1, t)=�k1

(t)

where

r=
2
_

and q=
Z&R0

Z+R0

. (2.9)

252 wu and xia
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Now, the second boundary condition in (2.4) gives

ik(1, t)=CV$k(t)+g~ (Vk(t))&
1
R

(Vk+1(t)&2Vk(t)+Vk&1(t)). (2.10)

Substituting (2.10) into (2.8) and eliminating �k1
(t&r) lead to

Vk(t)+Z _CV$k+g~ (Vk)&
1
R

(Vk+1(t)&2Vk(t)+Vk&1(t))&
= &qVk(t&r)+qZ[CV$k(t&r)+ g~ (Vk(t&r))]

&
qZ
R

[Vk+1(t&r)&2Vk(t&r)+Vk&1(t&r)].

This simplifies to

d
dt

[Vk(t)&qVk(t&r)]=&
1

ZC
Vk(t)&

q
ZC

Vk(t&r)

&g� (Vk)+qg� (Vk(t&r))

+
1

RC
[Vk+1(t)&qVk+1(t&r)&2(Vk(t)

&qVk(t&r))+Vk&1(t)&qVk&1(t&r)]

where g� (Vk)=1�C g~ (Vk). Define for each : # R the operator
D(:): C([&r, 0]; R) � R by

D(:).=.(0)&:.(&r), . # C([&r, 0]; R). (2.12)

Following [8, 9], we assume

g� (v)=&#v+ g(v), v # R, #>0 (2.13)

where g is a continuous function. Using (2.12) and (2.13), we obtain from
(2.11) the following LLTL-network coupling equations

d
dt

D(q)Vk
t =&\ 1

ZC
&#+ Vk(t)&q \ 1

ZC
+#+ Vk(t&r)&g(Vk)

+qg(Vk(t&r))+
1

RC
D(q)(Vk+1

t &2Vk
t +Vk&1

t )

k=1, 2, ..., N, (mod N ) (2.14)

253oscillations in coupled transmission lines
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where for each 1�k�N, t # R, Vk
t # C([&r, 0]; R) is defined by Vk

t (%)=
Vk(t+%) for all % # [&r, 0].

Note that Eq. (2.14) is a functional differential equation of neutral type
with one time delay r>0 (see [28, 29]). If there is no coupling between
these N networks, then (2.14) reduces to a single LLTL-network equation

d
dt

D(q)Vk
t =&\ 1

ZC
&#+ Vk(t)&q \ 1

ZC
+#+ Vk(t&r)

&g(Vk)+qg(Vk(t&r)). (2.15)

This equation was first obtained by Naguma and Shimura [49], Shimura
[55] (for R0=0) and Brayton [9] (for any R0�0) and was extensively
investigated. See [8, 9, 16, 20, 28, 36, 37, 39, 43, 44, 49, 55, 57, 65] and
the references therein.

Remark 2.1. Equation (2.14) can be viewed as a neutral system with
discrete diffusion and therefore may be considered as a special example of
the Rashevsky-Turing theory [51, 61]. Consequently, as in the Turning
ring case, Eq. (2.14) bears a symmetry of the cyclic group ZN and bifurca-
tion of discrete waves may occur. We will discuss the existence of discrete
waves in the remaining part of this paper. For more details about Turing
rings and the symmetry of equations we refer to [21, 24, 27] and the
references cited there.

3. Periods and a Priori Bounds

In this section, we prove three lemmas which will be needed in the study
of global Hopf bifurcation of discrete waves and phase-locked oscillations.
The first two lemmas concern the periods of periodic solutions of
Eq. (2.14). In the third lemma we give a priori bounds on the amplitude of
possible periodic solutions of Eq. (2.14).

We consider the following NFDEs

d
dt

D(q)xk
t = &axk(t)&bqxk(t&r)&g(xk(t))+qg(xk(t&r))

+dD(q)[xk+1
t &2xk

t +xk&1
t ]

k=1, 2, ..., N, (mod N) (3.1)

where constants d�0, q # [0, 1), D(q): C([&r, 0]; R) � R is defined by

D(q).=.(0)&q.(&r), . # C([&r, 0]; R), (3.2)

254 wu and xia
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r, a and b are positive constants, g is a differentiable function with g(0)=
g$(0)=0. Note that Eq. (3.1) is a condensed form of Eq. (2.14). The
parameters r, a, b, d and q are of physical meanings (see (2.6) and (2.9)).
Note also that Eq. (3.1) is a special case of the following more general
NFDEs

d
dt

D(q)xk
t =F(q, xk(t), xk(t&r))+dD(q)[xk+1

t &2xk
t +xk&1

t ] (3.3)

where q, d, r are constants as before and F : R3 � R is locally Lipschitzian.
In analyzing the global branch of phase-locked oscillations, we need the

following information on the periods of possible periodic solutions to
Eq. (3.1).

Lemma 3.1. For every integer m>0, Eq. (3.3) has no nonconstant
2r�m-periodic solution x(t) :=[xk(t)]N

k=1 with xk&1(t)=xk(t&r�m) for all
t # R and k=1, 2, ..., N, (mod N ).

Proof. We consider two cases separately.

Case (I). m is odd. Note that if x(t) is a nonconstant 2r�m-periodic
solution with xk&1(t)=xk(t&r�m), then

xk&1(t)=xk \t&
r
m+=xk \t&r+

m&1
2

2r
m+=xk(t&r).

It suffices to show that the lemma is true for m=1.

Suppose to the contrary that Eq. (3.3) has a nonconstant 2r-periodic
solution x(t) with xk&1(t)=xk(t&r). Let yk(t)=xk(t&r). We have
xk+1(t)=xk(t+r)=xk(t&r)=yk(t). Similarly, yk+1(t)=xk(t), xk&1(t)=
yk(t) and yk&1(t)=xk(t). Therefore, by (3.2)

D(q)xk+1
t =xk+1(t)&qxk+1(t&r)

=yk(t)&qyk+1(t&r)

= yk(t)&qxk(t)=D(q)xk&1
t

k=1, 2, 3, ..., N, (mod N )

and (xk(t), yk(t)) satisfies the following ordinary differential equations

d
dt

[xk(t)&qyk(t)]=F(q, xk(t), yk(t))+2d(1+q)( yk(t)&xk(t))

(3.4)
d
dt

[ yk(t)&qxk(t)]=F(q, yk(t), xk(t))+2d(1+q)(xk(t)&yk(t)).

255oscillations in coupled transmission lines
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Put

u(t)=xk(t)&qyk(t)
(3.5)

v(t)=yk(t)&qxk(t).

Then

xk(t)=
u(t)+qv(t)

1&q2

(3.6)

yk(t)=
qu(t)+v(t)

1&q2 .

Substituting (3.5) and (3.6) into (3.4), we see that (u(t), v(t)) is a solution
to the following system of ordinary differential equations

u$(t)=F \q,
u+qv
1&q2 ,

qu+v
1&q2++2d(v&u)

(3.7)

v$(t)=F \q,
qu+v
1&q2 ,

u+qv
1&q2++2d(u&v).

Eq. (3.7) is symmetric about u(t) and v(t). Therefore, the diagonal 2$

[(u, v) # R; u=v] is invariant under (3.7). Since any vector field on 2$R
cannot have nonconstant periodic solution, (u(t), v(t) � 2 for all t # R. So,
without loss of generality, we may assume that

u(t)<v(t) for all t # R. (3.8)

Replacing t by t&r in (3.8) gives

u(t&r)<v(t&r) for all t # R. (3.9)

On the other hand, we have

v(t&r)=yk(t&r)&qxk(t&r)

=xk(t)&qyk(t)=u(t)

and

u(t&r)=xk(t&{)&qyk(t&r)

=yk(t)&qxk(t)=v(t).

256 wu and xia
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Therefore, it follows from (3.9) that v(t)<u(t) for all t # R which con-
tradicts (3.8). This completes the proof for Case (I).

Case (II). m is even. Similarly, we need only to show the lemma for
m=2.

By way of contradiction, suppose that x(t) is an r-periodic solution to
Eq. (3.3) with xk&1(t)=xk(t&r�2). Set yk(t)=xk(t&r�2). As in Case (I),
(xk(t), yk(t)) satisfies the equations

d
dt

xk(t)=
F(q, xk, xk)

1&q
+2d( yk&xk)

d
dt

yk(t)=
F(q, yk, yk)

1&q
+2d(xk& yk)

A similar argument to that in Case (I) leads also to a contradiction.
This completes the proof.

Remark 3.1. An analog of Lemma 3.1 for the single scalar NFDE
(2.15) has been established in [39] for the case where no coupling occurs.

We will also need the following simple result.

Lemma 3.2. Assume that a>0, d�0 and xg(x)>0 for all x{0. Then
the system of ordinary differential equations

d
dt

xk(t)=&axk(t)&g(xk(t))+d(xk+1(t)&2xk(t)+xk&1(t))
(3.10)

k=1, 2, ..., N, (mod N)

has no nonconstant periodic solutions.

Proof. Suppose that x(t)=(x1(t), ..., xN(t)) is a nonconstant periodic
solution of (3.10). Set

V(x(t))= 1
2 :

N

k=1

(xk(t))2.

We have

V$(3.10)(x(t))= :
N

k=1

xk[&axk&g(xk)+d(xk+1&2xk+xk&1)]

=&a :
N

k=1

(xk)2& :
N

k=1

xkg(xk)+d :
N

k=1

xk(xk+1&2xk+xk&1)
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�&2aV(x)+2d :
N

k=1

(xkxk+1&xkxk)

�&2aV(x).

This implies that

V(x(t))�V(x(0)) e&2at � 0 as t � +�.

It follows then that limt � � x(t)=0. This is impossible since x(t) is a non-
constant periodic solution. This proves the lemma.

In what follows, we provide a priori bounds on periodic solutions of
Eq. (3.1).

Lemma 3.3. Assume that 0<a<b and

(i) xg(x)>0 for all x{0;

(ii) g(x) is nondecreasing;

(iii) limx � \� g(x)�x=+�;

(iv) for any q0 # [a�b, 1),

sup
0<q�q0

lim
x � \�

g(qx)&qg(x)
qx

<&(a+b).

Then for any $ # [a�b, 1), there exists M=M($)>0 such that if q # (0, $]
and x(t) is a periodic solution of Eq. (3.1) with period p>0 which satisfies
xk&1(t)=xk(t&p�2), then |x(t)|�M for all t # R.

Proof. We prove the existence of M such that xk(t)<M for any
k # [1, 2, ..., N]. The existence of M such that xk(t)� &M can be treated
similarly.

Let x(t) be a periodic solution of Eq. (3.1) with period p>0 and
xk&1(t)=xk(t&p�2) for k=1, 2, ..., N, (mod N ). Then t # R exists such
that

xk(t)&qxk(t&r)=max
s # R

[xk(s)&qxk(s&r)]. (3.11)

Therefore, for each fixed s # R,

xk(s)�qxk(s&r)+[xk(t)&qxk(t&r)]. (3.12)
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Or, equivalently,

D(q) xk
s �D(q)xk

t . (3.13)

Replacing s by s&r in (3.12) yields

xk(s)�q2xk(s&2r)+(q+1) D(q)xk
t .

Repeating the above process m-times, we get

xk(s)�qmxk(s&mr)+
1&qm

1&q
D(q)xk

t .

Therefore, letting m � �, we have

xk(s)�
D(q)xk

t

1&q
for all s # R. (3.14)

In particular,

xk(t)�
xk(t)&qxk(t&r)

1&q

which gives

xk(t)�xk(t&r). (3.15)

On the other hand, by (3.11), we see that (d�dt)[xk(t)&qxk(t&r)]=0.
Recall that x(t) is a solution to Eq. (3.1). It follows that

axk(t)+bqxk(t&r)=&g(xk(t))+qg(xk(t&r))

+d[D(q) xk+1
t &2D(q) xk

t +D(q)xk&1
t ]. (3.16)

Notice that xk(t&p)=xk(t) and xk&1(t)=xk(t& p�2) for any k=1,
2, ..., N, (mod N ). we have

D(q)xk+1
t =xk+1(t)&qxk+1(t&r)

=xk \t&
p
2+&qxk \t&

p
2

&r+=D(q)xk
t&( p�2) . (3.17)

Similarly,

D(q)xk&1
t =D(q)xk

t&( p�2) . (3.18)
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Substituting (3.17) and (3.18) into (3.16), we obtain

axk(t)+bqxk(t&r)= &g(xk(t))+qg(xk(t&r))

+2d[D(q) xk
t&( p�2)&D(q)xk

t ]. (3.19)

We now distinguish two cases:

Case (i). xk(t)>0. In this case, xk(t&r)<0. For otherwise, if
xk(t&r)�0, then the left hand side of (3.19) is positive, but the right hand
side

&g(xk(t))+qg(xk(t&r))+2d[D(q) xk
t&( p�2)&D(q)xk

t ]

� &g(xk(t))+qg(xk(t&r))

=g(xk(t)) _&1+q
g(xk(t&r))

g(xk(t)) &<0

by (3.13), (3.15), and the assumptions (i)�(ii) on g.
Now from (3.13) and (3.19), we see that

axk(t)+bqxk(t&r)�&g(xk(t))+qg(xk(t&r)) (3.20)

which implies that

0<axk(t)+ g(xk(t))�qxk(t&r) _g(xk(t&r))
xk(t&r)

&b& . (3.21)

Since xk(t&r)<0, (3.20) gives further that

g(xk(t&r))
xk(t&r)

<b.

By assumption (iii), there must be a constant M1>0 (independent of k)
such that xk(t&r)�&M1 . Substituting this into (3.21), we get

0<axk(t)+ g(xk(t))�qg(xk(t&r))&bqxk(t&r)

� max
&M1�z�0

$[ g(z)&bz] (3.22)

from which another constant M2>0 (independent of k) exists such that
x(t)�M2 , due to assumption (iii). Therefore,

xk(t)&qxk(t&r)�M2+$M1 .

This, together with (3.14), implies that xk(s)�(M2+$M1)�(1&$) for all s # R.
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Case (ii). x(t)�0. In this case, xk(t&r)�xk(t)�0. If
xk(t)&qxk(t&r)�0, then, by (3.14), we are done. If xk(t)&qxk(t&r)>0,
then xk(t)>qxk(t&r). From (3.20), we get

qg(xk(t&r))&bqxk(t&r)�aqxk(t&r)+ g(qxk(t&r)).

This implies

g(qxk(t&r))&qg(xk(t&r))
qxk(t&r)

�&(a+b).

Therefore, by assumption (iv), there exists M3 > 0 such that xk(t&r)�
&M3 . Repeating the argument in the last part of Case (i), we can find a
constant M>0 (independent of k) such that xk(s)�M for all s # R.

This completes the proof.

Remark 3.2. One can easily verify that all conditions (i)�(iv) are
satisfied for the function g(x)=cx3, c>0. Physically, such a function g
describes a cubic nonlinear conductance which can be realized with a tunnel
diode or an operational amplifier (see [33, 34]). More generally, one can
prove that every function g(x)=�n

i=1 gix2i+1 with g1>0, gi�0, i{1 also
verifies conditions (i)�(iv). For the use of higher order nonlinear conduc-
tance, we refer to [19].

4. Self-Sustained Periodic Solutions

In this section, we apply the global Hopf bifurcation theory sketched in
the Appendix to study the existence of periodic solutions of Eq. (3.1). As
Eq. (3.1) bears a symmetry of the cyclic group ZN of order N (i.e. inter-
changing xk with xk&1 does not change the equation), we expect that Hopf
bifurcation of periodic solutions x(t) satisfying xk&1(t)=xk(t&( j�N) p)
may occur, where p is a period of x(t), k (mod N ), and 0� j�n&1 is an
integer. In the literature, these periodic solutions are called discrete waves,
or synchronous oscillations (if j=0) and phase-locked oscillations (if j{0).

Clearly, finding a discrete wave satisfying xk&1(t)=xk(t&( j�N) p) of
Eq. (3.1) is equivalent to finding a periodic solution of a period p for the
following scalar neutral equation of mixed type (with both delayed and
advanced arguments)

d
dt

D(q) yt=&ay(t)&bqy(t&r)&g( y(t))+qg( y(t&r))

+dD(q)( yt+( j�N) p&2yt+ yt&( j�N) p) (4.1 j)
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to which the global Hopf bifurcation theory in the Appendix can be
applied.

We begin with the consideration of local Hopf bifurcations. Clearly,
y(t)#0 is a solution of Eq. (4.1j) for any q # [0, 1). The characteristic equa-
tion of the stationary point (0, q, p) is pj (*, p)=0, where

pj (*, p)=(*+aj+2d&de*( j�N ) p&de&*( j�N ) p) e*r

&q(*&bj+2d&de*( j�N ) p&de&*( j�N ) p)

and

aj=a+dcj , bj=b&dcj ,

cj=4 sin2(?j�N), j (mod N ).

In particular,

pj \im
2?
p

, p+=\im
2?
p

+amj+ eim(2?�p) r&q \im
2?
p

&bmj+ , m=1, 2, ...

So, we first consider the equation

(*+aj) e*r&q(*&bj)=0. (4.2)

Lemma 4.1. If 0<aj<bj , for some j # [0, 1, 2, ..., [(N&1)�2]], then

(i) the equation

tan ;r=
(a+b) ;
;2&ajbj

(4.3)

has infinitely many positive solutions 0<;1<;2< } } } <;n< } } } � � as
n � �, such that

(a) if - aj bj=?�2r, then 2r�(n+1)<2?�;n<2r�n�2r for n�1;

(b) if - aj bj=?�2r+m?�r for some positive integer m, then
2r<2?�;1<4r, 2r�n<2?�;n<2r�(n&1)�2r for 2�n�m (when m�2),
2r�(n+1)<2?�;n<2r�n�2{ for n�m+1;

(c) if r - aj bj�?&1�2 is not an integer, then 2?�;1>2r and 2r�n<
2?�;n<2r�(n&1)�2r for n�2;

(ii) when q=q\n , (4.2) has one and only one pair of purely imaginary
zeros which are given by \i;n , where

q\n= \�;2
n+a2

j

;2
n+b 2

j

,
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Figure 4.1

and when q>0 and q{qn , n=1, 2, ..., (4.2) has no purely imaginary
zeros;

(iii) Let *n(q)=un(q)+ivn(q) be the root of (4.2), where q is close to
qn such that un(qn)=0 and vn(qn)=;n . Then (d�dq) un(q)|q=qn>0.

Proof. We consider the graphs 11 and 12 in the region [(;, z) : ;>0]
of ;&z plane for the function z=(a+b);�(;2&ajbj) and z=tan ;r,
respectively. If - aj bj=?�2r, then, as Fig. 4.1 shows, 11 and 12 have
infinitely many intersections ( ;n , zn) such that

n?
r

<;n<
(2n+1)?

2r
, n=1, 2, 3, ... .

This gives

2r
n+1

<
2?
;n

<
2r
n

�2r, n=1, 2, 3, ... .

If - aj bj=?�2r+m?�r for a positive integer m, then 11 and 12 have
infinitely many intersection points ( ;n , zn) such that

(2n&1)?
2r

<;n<
n?
r

, n=1, 2, ..., m
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and

(m+k)?
r

<;m+k<
2(m+k)+1

2r
?, k=1, 2, ... .

See Fig. 4.2. Therefore,

2r<
2?
;1

<4r,

2r
n

<
2?
;n

<
2r

n&1�2
<

2r
n&1

, n=2, 3, ..., m, when m�2,

and

2r
m+k+1

<
2?

;m+k
<

2r
m+k

, k=1, 2, 3, ... .
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If ?�2r+(m&1)?�r<- ajbj<?�2r+m?�r for some nonnegative integer
m, then 11 and 12 have infinitely many intersection points (;n , zn) such that

(n&1)?
r

<;n<
(2n&1)?

2r
, n=1, 2, ...

in case m=0 (see Fig. 4.3), and

(2n&1)?
2r

<;n<
n?
r

, n=1, 2, ..., m

m+k+1
r

?<;m+k<
2(m+k)&1

2r
?, k=1, 2, 3, ...

in case m�1 (see Fig. 4.4). Therefore, we have

2?
;1

>4r,

2r
n

<
2?
;n

<
2r

n&1
�2r, for n�2
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if m=0 and

2r<
2?
;1

<4r,

2r
n

<
2?
;n

<
2r

n&1�2
<

2r
n&1

�2r, n=2, 3, ..., m, when m�2

2r
m+k

<
2r

m+k&1�2
<

2?
;m+k

<
2r

m+k&1
�2r, k=1, 2, ... .

if m�1. This completes the proof of (i).
To prove (ii), we substitute *=i; in (4.2) and get

(i;+aj)ei;r=q(i;&bj)

which is equivalent to

&aj cos ;r+; sin ;r=qbj

; cos ;r+aj sin ;r=q;.
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Thus

tan ;r=;
a+b

;2&ajbj

;2=
q2b2

j &a2
j

1&q2

from which (ii) follows immediately.
Finally, we prove (iii). By viewing * as a function of q, we differentiate

both sides of (4.2). It follows that

d*
dq

=
*&bj

[1+r(*+aj)] e*r&q
. (4.4)

Note that (4.2) implies

*&bj=
(*+aj)e*r

q
. (4.5)

Substituting (4.5) into (4.4), we obtain

1
q \

d*
dq+

&1

=
[1+r(*+aj)] e*r&q

(*+aj)e*r

=
1

*+aj
+r&

1
*&bj

. (4.6)

Therefore, with (4.6) in mind, we have

sign { d
dq

un(q)=} q=qn

=Sign { d
dq

Re *=} q=qn

=sign {Re \d*
dq+=} q=qn

=sign {Re \d*
dq+

&1

=} q=qn

=sign {Re \ 1
*+aj

+r&
1

*&bj+=}*=i;n
q=qn

=sign {r+
aj

a2
j +;2

n

+
bj

b2
j +;2

n==1>0.

This proves (iii) and completes the proof of Lemma 4.1.
Translating the results of Lemma 4.1 in terms of the notions in the

Appendix, we know that for each j (mod N ) with 0<aj<bj and for every
integer n�1, (0, qn , 2?�;n) is an isolated center of (4.1j), 1 # J(0, qn , 2?�;n)
and #1(0, qn , 2?�;n)=&1. Consequently, (4.1j) has a local bifurcation of
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periodic solutions of periods near 2?�;n . This implies that the original
system (3.1) of neutral equations has a (local) bifurcation of non-constant
discrete waves x(t) with period p close to 2?�;n and xk&1(t)=
xk(t&( j�N ) p), k (mod N ) and t # R.

To investigate the maximal continua of the above (local) branch of dis-
crete waves, we now apply the global Hopf bifurcation theorem in the
Appendix in conjunction with the two lemmas in Section 3. The following
results are typical and should easily be generalized to the case where N is
not necessarily even and j{N�2.

Theorem 4.2. Suppose 0<aj<bj , where N is even and j=N�2. Assume
that g satisfies the conditions (i)�(iv) in Lemma 3.3.

(i) If - ajbj=?�2r, then for any n�1 and q # (qn , 1), Eq. (3.1) has n
phase-locked periodic solutions [xk

l, q(t)]N
k=1 whose periods pl, q satisfy

2r�(l+1)<pl, q<2r�l, l=1, 2, ..., n and xk&1
l, q (t)=xk

l, q(t&(1�2) pl, q), k=
1, 2, ..., N, (mod N );

(ii) If - ajbj=?�2r+m?�r for some positive integer m, then for any
n�2 and q # (qn , 1), Eq. (3.1) has n&1 phase-locked periodic solutions
[xk

l, q(t)]N
k=1 whose periods pl, q satisfy 2r�l<pl, q<2r�(l&1) for 2�l�m

(when m�2), 2r�(l+1)<pl, q<2r�l for m+1�l�n, and xk&1
l, q (t)=

xk
l, q(t&(1�2) pl, q), k=1, 2, ..., N, (mod N );

(iii) If r - ajbj�?&1�2 is not an integer, then for any n�2 and
q # (qn , 1), Eq. (3.1) has n&1 phase-locked periodic solutions [xk

l,q(t)]N
k=1

where periods pl, q satisfy 2r�l<pl,q<2r�(l&1) for l=2, 3, ..., n and xk&1
l,q (t) =

xk
l, q(t&(1�2) pl, q), k=1, 2, ..., N, (mod N ).

Proof. We only give the proof for (iii). Other cases can be proved
analogously.

For any fixed positive integer n, we consider the following neutral equa-
tions

d
dt

D(Qn(:)) yt=&ay(t)&bQn(:) y(t&r)&g( y(t))+Qn(:) g( y(t&r))

+dD(Qn(:))[ yt+( p�2)&2yt+yt&( p�2)] (4.7)

where

Qn(:)=
qn+1+a�b

? \arctan :+
?
2+&

a
b

.

Note that Qn(:) is an increasing function with lim: � � Qn(:)=qn+1 and
lim: � &� Qn(:)=&a�b. The map b : X_R_R+ � R defined by

b(., :, p)=Qn(:) .(&r)
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for (., :, p) # X_R_R+ satisfies a Lipschitz condition with Lipschitz con-
stant L=qn+1<1, where X is the Banach space of bounded continuous
functions from R to R.

Under the assumption (i) of Lemma 3.3, we can easily show that for any
(:, p) # R_R+ , (0, :, p) is the only stationary solution of (4.7). Moreover,
using (4.2), we can show that 0 is never a characteristic value of (4.7) since
Qn(:)>&a�b. That is, (H2) of Theorem B in the Appendix is satisfied. Let
:l=Q&1

n (ql) for l=2, 3, ..., n, where Q&1
n denotes the inverse function of

Qn . Then (0, :l , 2?�;l) are isolated centers of (4.7) for each 2�l�n by
Lemma 4.1. Fix now n�2 and consider the set

S=Cl[( y, :, p); y(t) is a p-periodic solution of (4.7)]

Let C(0, :l , 2?�;l) denote the connected component of S containing
(0, :l , 2?�;l). By the statements after Lemma 4.1, C(0, :l , 2?�;l) is non-
empty. Moreover, the global Hopf bifurcation theorem, Theorem B in
the Appendix, implies that C(0, :l , 2?�;l) must be unbounded, as
#(0, :l , 2?�;l)=&1.

Note that Qn(:) increases from &a�b to qn+1 , there is !n such that
Qn(!n)=0. At :=!n , Eq. (4.7) reduces to the following equations

d
dt

y(t)=&ay(t)& g( y(t))+d _ y \t+
p
2+&2y(t)+y \t&

p
2+& . (4.8)

Recall that a p-periodic solution of (4.8) gives a p-periodic solution x(t) of
(3.10) satisfying xk&1(t)=xk(t&( p�2)). So by Lemma 3.2, Eq. (4.8) has no
nonconstant periodic solutions. Recall that 2r�l<2?�;l<2r�(l&1). By
Lemmas 3.1 and 3.3, we conclude that there exists a constant Mn=
Mn(qn+1)>0 such that

C \0, :l ,
2?
;l +/BC(Mn)_(!n , �)__2r

l
,

2r
l&1& ,

where

BC(Mn)=[ y # X ; sup
t # R

| y(t)|<Mn].

Since C(0, :l , 2?�;l) is unbounded, the projection of C(0, :, 2?�;l) onto the
parameter (:)-space must be unbounded above. This implies that for every
:>:l , Eq. (4.7) has a nonconstant periodic solution yl, :(t) with period
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pl, : # (2r�l, 2r�(l&1)). This, in turn, implies that for all q # (ql , qn+1),
Eq. (3.1) has a nonconstant discrete waves [xK

l, q(t)]N
k=1 with period pl, q #

(2r�l, 2r�(l&1)) and such that xk&1
l, q (t)=xk

l,q(t&( pl,q�2)), k=1, 2, ..., N,
(mod N ). This completes the proof.

We end this section with several remarks.

Remark 4.1. We note that the existence of phase-locked periodic solu-
tions of periods less than 2r for Eq. (3.1) with q # (q2 , 1) has been guaran-
teed by Theorem 4.2 in all cases. We call these solutions rapidly oscillating
solutions. It has been observed, both numerically and theoretically, that
rapidly oscillating periodic solutions appear to be unstable for many
retarded equations. It is still a question that whether the same phenomenon
happens to the neutral equations.

Remark 4.2. We are unable to obtain global results on the existence of
phase-locked periodic solutions with period greater than 2r. This is because
we are unable to exclude the existence of phase-locked periodic solution
with period equal to nr, where n�2 is an integer. However, the local Hopf
bifucation theorem guarantees that phase-locked periodic solutions with
period greater than 2r do exist for q near q1 in the case (ii) and (iii). We
call these periodic solutions slowly oscillating solutions. It is also an inter-
esting question that whether these periodic solutions are stable.

Remark 4.3. If d=0 in Eq. (3.1), i.e. there is no coupling between lines,
then Theorem 4.2 gives also a global branch of synchronous oscillating
solutions. Physically, this can be interpreted as each terminal voltage
oscillating in the same way (each voltage is of identically the same
amplitude at any time) so that there is no current flowing through the
coupling resistor R (in this case, we can view R=� and d=0).

Remark 4.4. It follows from Theorem 4.2 that if 0<aj<bj for j=N�2
(when N is even), then the system (3.1) has large amplitude periodic
solutions. It is not difficult to see that 0<aj<bj for j=N�2 is equivalent
to

0<#RC&4<R�Z. (4.9)

It follows that, if ZC>1�#, choosing large coupling resistance R will
guarantee (4.9). This also implies that if the lumped parallel capacitance C
or the characteristic impedance Z is large, there likely exist phase-locked
oscillations. And the synchronous oscillations always exist in the system
(by taking R=�, see Remark 4.3). This analysis seems in agreement with
that obtained by Shimura [55].
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5. Conclusions and Discussions

In this paper, we have studied the ring structured, resistively-coupled
lossless transmission lines. The telegrapher equation is reduced to a sym-
metric neutral system. We have proved, under fairly general conditions, the
existence of large amplitude phase-locked and synchronous periodic solu-
tions. To the best of our knowledge, it is the first global result on the exist-
ence of periodic solutions for n-dimensional autonomous neutral functional
differential systems. This is due to the symmetry of the equations in question
and our global Hopf bifurcation theorem.

As electric circuits, the transmission lines can be coupled resistively,
inductively (magnetically) or capacitively (electrostatically). In this paper,
only resistive coupling (by a common resitor R) is discussed. The same
problem for inductive coupling or capacitive coupling should also be
addressed. But differential equations governing the transmission lines will
be more complicated. This is beyond the scope of this paper and we shall
consider them elsewhere.

Note also that the inductive coupling may not be electrically connected
at all. In this case, the coupling is affected through mutual inductance of the
lines in nearest neighbours. Moreover, a combination of the above
couplings is also possible. We refer to [7, 25, 56, 58] for more details on
circuit couplings.

We are only concerned with the existence of symmetric periodic solu-
tions which describe phase-locked or synchronous oscillations. The stability
of these periodic solutions is an important issue and remains unsolved.
We will address this problem in our future investigations. (We have
recently received a preprint of Hale [30] where an idea of how to deter-
mine the stability of periodic solutions of neutral equations is pre-
sented.)

A natural question also arises here. Since electric circuits are widely used
to simulate biological rhythms, it is plausible to question the applicability
of the lossless transmission line equations presented in this paper to
problems of oscillations in biology. The simulations of the classical van del
Pol relaxation oscillator in various disciplines are well-known [3�7, 17�19,
25, 34, 40�42, 47, 62, 63, 67]. In neuron electro-physiology, numerous elec-
tric circuits have been built to model the nerve activities [15, 22, 31�34].
In particular, Hodgkin�Huxley theory [31] on nerve conduction has
represented a non-myelinated axon membrance as a one-dimensional trans-
mission line. Although the electrical characterization of the membrance is
very different from the (lossless) transmission line we described (the mem-
brance has a distributed constant resistance but has no inductance), it is
still interesting to construct a specific realization of the dynamical system
(3.1) in mathematical biology.
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Let us pursue this line of thought somewhat further before we leave this
discussion. Actually, we have been led to a well-developed theory of
dynamical analogies [7, 51, 53]. It is well known that any electrical system
can be replaced by an analogous mechanical system, and conversely. Under
this analogy, we conclude that the electric circuit considered in this paper
can be a simulator of almost all stringed instruments, where the tunnel
diode in the transmission line corresponds to the Coulomb friction in the
string, the voltage-current corresponds to frictional force-relative velocity
and the inductance corresponds to the mass (see, for example, [55]). It is
the main purpose of the theory of dynamical analogies to study those
systems which are utterly diverse in character, yet there is a precise sense
in which certain pairs of diverse systems may be considered dynamically
equivalent.

Appendix

Let X denote the Banach space of bounded continuous mappings
x : R � Rn equipped with the supremum norm. For reasons stated in Sec-
tion 4, we need to consider neutral functional differential equations of
mixed type (with both delayed and advanced arguments). Therefore, for
x # X and t # R, we will use xt to denote the element in X defined by
xt(%)=x(t+%) for % # R.

Consider the following neutral functional differential equation

d
dt

[x(t)&b(xt , :, p)]= f (xt , :, p) (NFDE)

parametrized by two real numbers (:, p) # R_R+ , where R+=(0, �),
f : X_R_R+ � Rn is completely continuous, b : X_R_R+ � Rn is con-
tinuous and there exists a constant L # [0, 1) such that

|b(., :, p)&b(�, :, p)|�L sup
% # R

|.(%)&�(%)|

for all (:, p) # R_R+ and ., � # X. Identifying the subspace of X consist-
ing of all constant mappings with Rn, we obtain the restricted mappings
f� := f | Rn_R_R+

and b� :=b| Rn_R_R+
: Rn_R_R+ � Rn. We need the

smoothness of these two mappings.

(H1) b� and f� are twicely continuously differentiable.

Denote by x̂0 the constant mapping with the value x0 # Rn. We call
(x̂0 , :0 , p0) a stationary solution of (NFDE) if f� (x0 , :0 , p0)=0. We also
propose the following assumption:
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(H2) At each stationary solution (x̂0 , :0 , p0), the derivative of
f� (x̂, :, p) with respect to the first variable x, evaluated at (x0 , :0 , p0), is an
isomorphism of Rn.

Therefore, for each stationary solution (x̂0 , :0 , p0) there exist =0>0 and
a continuously differentiable mapping y : B=0

(:0 , p0) � Rn such that
f� ( y(:, p), :, p)=0 for

(:, p) # B= (:0 , p0) :=(:0&=0 , :0+=0)_( p0&=0 , p0+=0).

Concerning the characteristic function, the following assumption is natural.

(H3) b(., :, p) and f (., :, p) are differentiable with respect to .,
and the n_n complex matrix function 2( y(:, p), :, p)(*) is continuous in
(:, p, *) # B=0

(:0 , p0)_C.

Here, for each stationary solution (x̂0 , :0 , p0),

2(x̂0 , :0 , p0)(*) ] *[Id&D.b(x̂0 , :0 , p0)(e*}Id )]

&D. f (x̂0 , :0 , p0)(e*}Id )

is called the characteristic matrix of (x̂0 , :0 p0) and the zeros of
det 2(x̂0 , :0 , p0)(*)=0 are called characteristic values of (x̂0 , :0 , p0). A
stationary solution (x̂0 , :0 , p0) is said to be a center if it has purely
imaginary characteristic values of the form im(2?�p0) for some positive
integer m. A center (x̂0 , :0 , p0) is isolated if (i): it is the only center in some
neighbourhood of (x̂0 , :0 , p0) and (ii): it has only finitely purely imaginary
characteristic values of the form im(2?�p0), m is an integer.

Let (x̂0 , :0 , p0) be an isolated center. We set J(x̂0 , :0 , p0)=[m; m is a
positive integer and im(2?�p0) is characteristic value of (x̂0 , :0 , p0)]. We
also assume the following:

(H4) For some m # J(x̂0 , :0 , p0) there exist = # (0, =0) and $ # (0, =0)
so that on [:0&$, :0+$]_�0= , p0

, det 2( y(:, p), :, p)(u+m(2?�p) i)=0 if
and only if :=:0 , u=0 and p= p0 , where 0= , p0

=[(u, p); 0<u<=,
p0&=<p<p0+=].

Let

H\
m (x̂0 , :0 , p0)(u, p) ] det 2( y(:0\$ , p), :0\$ , p) \u+i

2m?
p + ,

#m(x̂0 , :0 , p0) ] degB(H&
m (x̂0 , :0 , p0), 0= , p0

)

&degB(H+
m (x̂0 , :0 , p0), 0= , p0

),

where degB denotes the Brouwer degree. We can now state the local and
global Hopf bifurcation theorems.
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Theorem A. Assume that (H1)�(H4) hold for some isolated center
(x̂0 , :0 , p0) and some m # J(x̂0 , :0 , p0). If #m(x̂0 , :0 , p0){0 then there
exists a sequence (:k , pk) # R_R+ with (:k , pk) � (:0 , p0) as k � � and
such that at each (:k , pk), (NFDE ) has a nonconstant periodic solution xk(t)
with a period pk�m and xk(t) � x̂0 uniformly for t # R as k � �.

Theorem B. Assume that (H1)�(H3) hold and

(H5) All centers of (NFDE ) are isolated and (H4) holds for every
isolated center (x̂0 , :0 , p0) and m # J(x̂0 , :0 , p0);

(H6) For every bounded set W/X_R_R+ , there exists M>0 so
that | f (., :, p)& f (�, :, p)|�M sup% # R |.(%)&�(%)| for all (., :, p),
(�, :, p) # W.

Let

� (b, f )=Cl[(x(t), :, p); x(t) is a p-periodic solution of (NFDE )];

N(b, f )=[(x̂, :, p); f (x̂, :, p)=0];

C(x̂0 , :0 , p0)=the connected component of (x̂0 , :0 , p0) in � (b, f ).

Then either

(i) C(x̂0 , :0 , p0) is unbounded, or
(ii) C(x̂0 , :0 , p0) is bounded, C(x̂0 , :0 , p0) & N(b, f ) is finite and

:
(x̂ , : , p) # C(x̂0 ,:0 , p0) & N(b, f )

#m(x̂, :, p)=0,

for all m=1, 2, ..., where #m(x̂, :, p) is defined as above if m # J(x̂, :, p), and
#m(x̂, :, p)=0 otherwise.

Proof of Theorems A and B. We give only a sketch of the proof. For the
detailed argument and related references, we refer to [39].

Let S1=R�2?Z, E=C(S1; Rn), F=L2(S1; Rn) and define L : Dom(L)=
H1(S1; Rn)/E � F, B, N : E_R_R+ � F by

(Lz)(t)=z* (t), N(z, :, p)(t)=
p

2?
f (zt, p , :, p),

B(z, :, p)(t)=b(zt, p , :, p),

where zt, p(%)=z(t+(2?�p)%), % # R. It then follows that x(t) is a p-periodic
solution of (NFDE) if and only if z(t)=x(( p�2?) t) is a solution in E of the
operator equation L[z&B(z, :, p)]=N(z, :, p), called composite coin-
cidence equation.
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Let the group S1 act on E and F by shifting the argument. L is then an
equivariant bounded linear Fredholm operator of index zero with an
equivariant compact resolvent K. Similarly, N is an equivariant compact
mapping and B is an equivariant condensing mapping. Moreover, at
( y(:, p), :, p),

DzN( y(:, p), :, p) z(t)=
p

2?
Df ( y(:, p), :, p)zt, p ,

DzB( y(:, p), :, p) z(t)=Db( y(:, p), :, p)zt, p ,

where (:, p) # D=(:0&$, :0+$)_( p0&=, p0+=). Identify �D with the
unit circle S1. It follows that the mapping U :=Id&DzB( y(:, p), :, p)&
(L+K)&1 [Dz N( y(:, p), :, p)+K(Id&DzB( y(:, p), :, p))] is an iso-
morphism of E for (:, p) # �D and the mapping 9 : S1 � GL(E) given by
(:, p) # S1=�D � U(:, p) # GL(E) is continuous.

E has the (isotypical) decomposition E=��
k=0 Ek , where E0$Rn and

for each k�1, Ek is spanned by cos(kt) =j and sin(kt) =j , 1� j�n, where
[=1 , ..., =n] is the standard basis of Rn. So, we have 9(:, p) Ek�Ek , which
leads to a well-defined mapping 9k(:, p)=9(:, p)| Ek

, for each k�0. Now
a direct computation shows that

9k(:, p)=
p

2k?i
2( y(:, p), :, p) \ik

2?
p + .

Let

==sign det 90(:, p), (:, p) # �D,

nk(x̂0 , :0 , p0)== degB(det 9k , �D), k=1, 2, ... .

The corresponding S1-equivariant degree relative to D for the nonlinear
composite coincidence equation L[z&B(z, :, p)]=N(z, :, p), as shown
in [39], is a sequence of integers whose k th component is exactly
nk(x̂0 , :0 , p0). Moreover, it is also known from [39] that nk(x̂0 , :0 , p0)=
#k(x̂0 , :0 , p0), k=1, 2, ... . Consequently, Theorem A and B follow from the
existence and additivity properties of the S1-degree (see [39] for details).
This completes the proof.

Acknowledgment

The authors thank Professors K. Cooke and J. Hale for their encouragement, helpful dis-
cussions and, in particular, for their calling our attention to some related references.

275oscillations in coupled transmission lines



F
ile

:5
05

J
29

94
30

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:3

3
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

38
24

Si
gn

s:
31

98
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

References

1. V. E. Abolinia and A. D. Mishkis, A mixed problem for a linear hyperbolic system on
the plane, Latvijas Valsts Univ. Zinatn. Raksti 20 (1958), 87�104.

2. V. E. Abolinia and A. D. Mishkis, Mixed problems for quasi-linear hyperbolic systems
in the plane, Mat. Sb. (N.S.) 50 (1960), 423�442.

3. J. C. Alexander and J. F. G. Auchmuty, Global bifurcation of phase-locked oscillators,
Arch. Rational Mech. Anal. 93 (1986), 253�270.

4. S. E. D. Alian and D. A. Linkens, Mode analysis of a tubular structure of coupled
non-linear oscillators for digestive-tract modeling, Bull. Math. Biol. 471 (1985), 71�
110.

5. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, ``Theory of Oscillators,'' Pergamon
Press, Oxford, 1966.

6. J. Be� lair and P. Holmes, On linearly coupled relaxation oscillations, Quart. Appl. Math.
42 (1984), 193�219.

7. W. G. Bickely and A. Talbot, ``An Introduction to the Theory of Vibrating Systems,''
Oxford Univ. Press, London, 1961.

8. R. K. Brayton, Bifurcation of periodic solutions in a nonlinear difference-differential
equation of neutral type, Quart. Appl. Math. 24 (1966), 215�224.

9. R. K. Brayton, Nonlinear oscillations in a distributed network, Quart. Appl. Math. 24
(1967), 289�301.

10. R. K. Brayton and W. L. Miranker, A stability theory for nonlinear mixed initial
boundary value problems, Arch. Rational Mech. Anal. 17 (1964), 358�376.

11. R. K. Brayton and J. K. Moser, A theory of nonlinear networks-I, Quart. Appl. Math.
22 (1964), 1�33.

12. S. Chowdhury, J. S. Barkatullah, D. Zhou, E. W. Bai, and K. E. Lonngren,

A transmission line simulator for high-speed interconnects, IEEE Trans. Circuits
Systems CAS39 (1992), 201�211.

13. K. L. Cooke and D. W. Krumme, Differential-difference equations and nonlinear initial-
boundary value problems for linear hyperbolic partial differential equations, J. Math.
Anal. Appl. 24 (1968), 372�387.

14. K. L. Cooke, ``A Linear Mixed Problem with Derivative Boundary Conditions,'' Lecture
Series, Vol. 15, Institute for Fluid Dynamics and Applied Mathematics, University of
Maryland, 1970.

15. J. Cronin, ``Mathematical Aspects of Hodgkin�Huxley Neural Theory,'' Cambridge Univ.
Press, New York, 1987.

16. M. A. Cruz and J. K. Hale, Stability of functional differential equations of neutral type,
J. Differential Equations 7 (1979), 334�355.

17. T. Endo and S. Mori, Mode analysis of a multimode ladder oscillator, IEEE Trans.
Circuits Systems CAS23 (1976), 100�113.

18. T. Endo and S. Mori, Mode analysis of a two-dimensional low-pass multimode
oscillator, IEEE Trans. Circuits Systems CAS23 (1976), 517�530.

19. T. Endo and S. Mori, Mode analysis of a ring of a large number of mutually coupled
van del Pol oscillators, IEEE Trans. Circuits Systems CAS25 (1978), 7�18.

20. J. M. Ferreira, On the stability of a distributed network, SIAM J. Math. Anal. 17 (1986),
38�45.

21. B. Fiedler, ``Global Bifurcation of Periodic Solutions with Symmetry,'' Lecture Notes in
Mathematics, Vol. 1309, Springer-Verlag, New York, 1988.

22. R. FitzHugh, Mathematical models of excitation and propagation in nerve, in ``Biologi-
cal Engineering'' (H. P. Schwan, Ed.), McGraw�Hill, New York, 1969.

23. F. E. Gardiol, ``Lossy Transmission Lines,'' Artech House, Norwood, MA, 1987.

276 wu and xia



F
ile

:5
05

J
29

94
31

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:3

3
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

40
97

Si
gn

s:
34

86
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

24. K. Geba, W. Krawcewicz, and J. Wu, An equivariant degree with applications to sym-
metric bifurcation problems. III. Bifurcation theorems of functional differential equations
with symmetries, Preprint, 1993.

25. J. Grasman, ``Asymptotic Methods for Relaxation Oscillations and Applications,''
Springer-Verlag, New York, 1987.

26. J. P. Gollub, T. O. Brunner and B. G. Danly, Periodicity and chaos in coupled non-
linear oscillators, Science 200 (1978), 48�50.

27. M. Golubitsky, I. Steward and D. G. Schaeffer, ``Singularities and Groups in Bigur-
cation Theory,'' Vol. II, Springer-Verlag, New York, 1988.

28. J. K. Hale, ``Theory of Functional Differential Equations,'' Springer-Verlag, New York,
1977.

29. J. K. Hale and S. M. V. Lunel, ``Introduction to Functional Differential Equations,''
Springer-Verlag, New York, 1993.

30. J. K. Hale, Partial neutral functional differential equations, Rev. Roumaine Math. Pure
Appl. 39 (1994), 339�344.

31. A. L. Hodgkin and A. F. Huxley, A qualitative description of membrance current and
its application to conduction and excitation in nerve, J. Physiol. London 117 (1952),
500�544.

32. F. C. Hoppensteadt, Electrical models of neurons, (F. C. Hoppensteadt, Ed.), Lect. Appl.
Math. 19 (1981), 327�344.

33. F. C. Hoppensteadt, ``An Introduction to the Mathematics of Neurons,'' Cambridge
Studies in Mathematical Biology, Vol. 6, Cambridge Univ. Press, New York, 1986.

34. J. P. Keener, Analog circuitry for the van der Pol and Fitzhugh�Nagumo equations,
IEEE Trans. Systems, Man Cybernetics, SMC13 (1983), 1010�1014.

35. V. B. Kolmanovskii and V. R. Nosov, Instability of systems with aftereffect, Automation
Remote Control 44 (1983), 24�32.

36. V. B. Kolmanovskii and V. R. Nosov, Neutral-type systems with aftereffect, Automation
Remote Control 45 (1984), 1�28.

37. V. B. Kolmanovskii and V. R. Nosov, ``Stability of Functional Differential Equations,''
Academic Press, London, 1986.

38. N. S. Koshlyakov, M. M. Smirnov, and E. B. Gliner, ``Differential Equations of
Mathematical Physics,'' North-Holand, Amsterdam, 1964.

39. W. Krawcewicz, J. Wu, and H. Xia, Global Hopf bifurcation theory for condensing
fields and neutral equations with applications to lossless transmission problems, Canad.
Appl. Math. Quart. 1 (1993), 167�220.

40. D. A. Linkens, Analytical solution of large number of mutually coupled near-sinusoidal
oscillators, IEEE Trans. Circuits Systems CAS21 (1974), 294�300.

41. D. A. Linkens, The stability of entrainment conditions for RLC coupled van der Pol
oscillators, Bull. Math. Biol. 39 (1977), 359�372.

42. D. A. Linkens, I. Taylor and H. L. Duthie, Mathematical modelling of the colorectal
myelectrical activity in humans, IEEE Trans. Biomedical Eng. BME23 (1976), 101�110.

43. O. Lopes, Forced oscillations in nonlinear neutral differential equations, SIAM J. Appl.
Math. 29 (1975), 196�201.

44. O. Lopes, Stability and forced oscillations, J. Math. Anal. Appl. 55 (1976), 686�698.
45. P. C. Magnusson, G. C. Alexander, and V. K. Tripathi, ``Transmission Lines and

Wave Propagation,'' 3rd ed., CRC Press, Boca Raton, 1992.
46. S. I. Minkin and Yu. S. Sklyarov, Analysis of transients in long dc lines by methods of the

theory of differential-difference equations, Izv. Vuzov. Elektromekhanika 7 (1955), 687�694.
47. N. Minorsky, ``Nonlinear Oscillations,'' Van Nostrand, New York, 1962.
48. W. L. Miranker, Periodic solution of the wave equation with a nonlinear interface condi-

tion, IBM J. Res. Develop. 5 (1961), 2�24.

277oscillations in coupled transmission lines



F
ile

:5
05

J
29

94
32

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:3

3
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

32
15

Si
gn

s:
26

35
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

49. J. Nagumo and M. Shimura, Self-oscillation in a transmission line with a tunnel diode,
Proc. IRE 49 (1961), 1281�1291.

50. Y. Nishio and S. Mori, Mutually coupled oscillators with an extremely large number of
steady states, IEEE Int. Symp. Circuit Systems ISCAS (1992), 819�822.

51. H. F. Olson, ``Dynamical Analogies,'' D. Van Nostrand Company, New York, 1958.
52. F. Romeo and M. Santomauro, Time-domain simulation of n coupled transmission lines,

IEEE Trans. Microwave Theory Tech. MTT35 (1987), 131�136.
53. R. Rosen, ``Dynamical System Theory in Biology,'' Vol. 1, Stability Theory and Its

Applications, Wiley�Interscience, New York, 1970.
54. S. K. Sarna, E. E. Daniel and Y. T. Kingma, Simulation of slow-wave electrical activity

of small intestine, Amer. J. Physiol. 221 (1971), 166�175.
55. M. Shimura, Analysis of some nonlinear phenomena in a transmission line, IEEE Trans.

Circuit Theory 14 (1967), 60�68.
56. H. H. Skilling, ``Electrical Engineering Circuits,'' 2nd ed., Wiley, New York, 1985.
57. M. Slemrod, Nonexistence of oscillations in a distributed network, J. Math. Anal. Appl.

36 (1971), 22�40.
58. S. Smale, On the mathematical foundations of electrical circuit theory, J. Diff. Geom. 7

(1972), 193�210.
59. A. N. Tikhonov and A. A. Samarskii, ``Equations of Mathematical Physics,'' Pergamon

Press Macmillan, 1963.
60. V. K. Tripathi and J. B. Rettig, A SPICE model for multiple coupled microstrips and

other transmission lines, IEEE MTTS Dig. (1985), 703�706.
61. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London B 237

(1952), 37�72.
62. B. Van der Pol, The nonlinear theory of electric oscillations, Proc. IRE 10 (1934),

1051�1086.
63. B. Van der Pol and J. van del Mark, The heartbeat considered as a relaxation oscilla-

tion and an electrical model of the heart, Phil. Mag. 6 (1928), 763�775.
64. J. Winner, F. Neppl, A. Lill, G. Ro� ska, and W. Zatsch, Ring oscillator structure for

realistic dynamic stress of mosfets and interconnects, IEEE Proc. Microelectronic Test
Structures 1 (1988), 56�60.

65. J. Wu, Global continua of periodic solutions to some difference-differential equations of
neutral type, Tohuku Math. J. 45 (1993), 67�88.

66. J. Wu, Delay-induced discrete waves of large amplitudes in neutral networks with cir-
culant connection matrices, FI93-DS02, The Fields Institute, 1993.

67. E. C. Zeeman, Differential equations for the heartbeat and nerve impulse, in ``Dynamical
Systems'' (M. M. Peixoto, Ed.), pp. 683�741, Academic Press, New York, 1973.

Printed in Belgium
Uitgever: Academic Press, Inc.
Verantwoordelijke uitgever voor Belgie� :
Hubert Van Maele
Altenastraat 20, B-8310 Sint-Kruis

278 wu and xia


