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ABSTRACT 

We study the Cohen-Grossberg-Hopfield model of neural networks with delayed 
interactions when the interconnection matrix has only real and purely imaginary 
eigenvalues. Two indices, the symmetry index and the antisymmetry index, are 
introduced and are used to describe the pattern of sustained oscillations caused by 
the delay. It is shown that the parameter plane of these indices is divided into two 
regions by a smooth curve across which the patterns of oscillations switch. It is also 
shown that the stability of sustained oscillations is completely determined by the 
third-order term of the input-output relation. 

1. I N T R O D U C T I O N  AND T H E  M O D E L  

Consider  a neural  ne twork  of n neurons governed by  the  C o h e n -  
Grossbe rg -Hopf i e ld  equa t ion  

d 1 ui(s) + ~ Tijfj(uj(s)),  1 <~ i<~ n, (1.1) C ~ (  s) = - R--~ j : l  
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where ui(s) represents the voltage on the input of the ith neuron, C~ is the 
input capacitance of the cell memberance of the ith neuron, T~j is the 
synapse efficacy between neuron i and j with T~j = R~j I when the nonin- 
verting output of neuron j is connected to the input of neuron i through a 
resistance Rij and T~j = - R ~  1 when the inverting output of neuron j is 
connected to the input of neuron i through a resistance Rzj, R~ is the total 
parallel transmemberance resistance of the ith neuron, and 

1 1 n 1 
+ ~ ,  , 1 <~ i<~ n, (1.2) 

Ri p~ j= 1 R~j 

with Pi denoting the input resistance of neuron i corresponding to the 
connection to the outside of the network, and the transfer function f/(u) is 
called the input-output relation which is nonlinear and sigmoidal, saturating 
at _ 1 with the maximal slope at u = 0. Throughout this paper, we will 
assume 

fi: R---) Ris  C 4, L ( 0 )  = 0, f ; ( 0 )  = sup f ; ( x )  > 0, f : ' (0)  = 0. 
x ~  R 

(1.3) 

It was shown in [1, 2], by using a certain Lyapunov function incorporated 
with the LaSalle's invariance principle, that every solution of system (1.1) 
with symmetric interconnection matrix (T,j) and without self connections 
(i.e., T,i = 0 for 1 < i ~< n) converges to the set of equilibria. This leads 
Hopfield to the conclusion that "neurons with graded response have collec- 
tive computational properties." 

However, it was implicitly observed in [2] and explicitly pointed out by 
Marcus and Westervelt in [3, 4] that in both real neural networks and their 
hardware implementations, neurons do not respond and communicate in- 
stantaneously and time lags always exist. This motivated the following 
model of neural networks with delayed interactions: 

1 u , ( s )  + ~: T, j f j ( u j ( s  - ~*) ) ,  1 < i < n, (1.4) ci--~s ui( s) = - R---~ j=l  

which has been investigated in [3-10]. In particular, Marcus and Westervelt 
demonstrated that the delay may cause sustained oscillations in the net- 
work. This demonstration was based on linear analysis, numerical integra- 



Oscillations in Delayed Neural Networks 57 

tion, and experiments on a small (eight) electric network, and was later 
rigorously confirmed in [10] (at least for some specific networks) where 
large-amplitude sustained oscillations in the form of discrete waves were 
established. 

As stable solutions of (1.1) or (1.4) are related to stored information, it is 
important to describe the pat tern and stability of the aforementioned delay 
induced sustained oscillations. This problem was studied in [5, 8] for 
networks consisting of a single neuron with self connection. However, the 
total number of neurons in real networks is immense, and hence the study of 
Belair and Herz clearly has to be extended from scalar equations to systems. 

In this paper we will describe tile pat tern and stability of sustained 
oscillations for a general class of networks whose interconnection matrices 
have only real and purely imaginary eigenvalues. This class of networks 
includes not only those with symmetric interconnection matrices and anti- 
symmetric interconnection matrices, but also others as well. This restriction 
on the connection topology allows us to introduce two important quantities, 
the symmetry index and the ant isymmetry index, in terms of the coefficients 
of the interconnection matrix. It will be shown that  the pat tern of oscilla- 
tions is completely characterized by these two indices, the neuron gain and 
the size of the delay, and that  the stability of oscillations is  determined by 
the third-order term of the input-output relation. Moreover, we will also 
show that  in the parameter  plane of the symmetry and ant isymmetry 
indices, there is a smooth curve across which patterns of oscillations may 
switch (this phenomenon is called mode jumping in the monograph [11]). 

For the sake of simplicity, we will assume throughout the remainder of 
this paper that  C, = C, fi = f, r~  = r* ,  and R i = R for all 1 ~< i, j < n. 
Rescaling the time, delay, and T,j by 

t =  s / R C ,  T = "r* /RC,  J,j = RTiy , (1.5) 

(1.4) becomes 

dui( t)  
u i ( t ) +  ~ _ , J o f ( % ( t - " r ) ) ,  l<<.i<<.n. (1.6) 

dt j= 1 

Consequently, it is the relative size of the delay (relative to RC, the 
relaxation time) not the absolute size of the delay that  plays a role in the 
occurrence of sustained oscillations. As designing an electric network to 
operate more quickly increases the relative size of the intrinsic delay % large 
delay may indeed occur in hardware implementations and hence may cause 
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oscillations. For the discussion of delay phenomenon in real neural networks, 
we refer to [12]. 

Note also that in (1.6) we have 

n n n 1 

i 1 )  R 
Ri - = 1 - - .  

/~i P~ P 

Furthermore, (1.6) can be put in the vector form 

i t ( t )  = - u (  t )  + JF(  u( t - r ) ) ,  

where u = (ul ,  . . . ,  %)T,  j = (Ji j)  and F(u) = ( f ( u  1) . . . . .  f (Un))  T. 

2. CRITICAL VALUES OF DELAY 

(1.7) 

(1.8) 

i t ( t )  = - u (  t)  +  Ju( t - ¢), 

/ 3 = f ' ( 0 )  > 0 

is the neuron gain. The characteristic equation of (2.1) is given by 

d e t [ ( z  + 1)Id - ~ e - Z ¢ J ]  = O, (2.2) 

where Id is the n × n identity matrix. It is easy to show that z is a solution 
of (2.2) (i.e., a characteristic value of (2.1)) if and only if there exists 
A ~ ( r (J ) ,  the set of eigenvalues of J, such that 

z + 1 - A ~ e  - z ,  = 0. (2.3) 

(2.1) 

where 

Clearly, 0 is an equilibrium of system (1.8). In order to investigate 
periodic solutions bifurcating from this trivial solution, we linearize system 
(1.8) at 0 and obtain 
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Therefore, if hi, 1 <~ j <<. n, are eigenvatues of J, then (2.2) is equivalent to 
n scalar equations 

z +  1 -  h j f le  -z~= 0, 1 ~<j~< n. (2.4) 

The following result was established in [3-5]. 

LEMMA 2.1. Let [3 = f'(O) and Aj, 1 ~ j <<. n, be eigenvalues of A Then 

(i) All roots of (2.2) have negative real parts for r = 0 if and only if 
R e h j <  1/[3, 1 <~ j <<. n; 

(ii) All roots of (2.2) have negative real parts for all nonnegative r if and 
only if [hj[ < 1/[3, 1 <~ j 4 n. 

In what follows, we will regard the delay as the parameter of bifurcation 
and we assume 

1 
max Re Aj < --  < max Ihj[. (2.5) 

l~j<~n [3 l<<.j<~n 

By Lemma 2.1, this assumption says that the trivial solution of (1.8) is 
asymptotically stable if no delay is present, and this asymptotically stable 
state can be destabilized by the introduction of time lags. 

In what follows, we will restrict ourselves to the network whose (normal- 
ized) interconnection matrix J has only real and purely imaginary eigenval- 
ues. Prototypes of such networks include those with symmetric or antisym- 
metric interconnection matrices. But examples in later sections should show 
that there are many other types of networks which have only real and purely 
imaginary eigenvalues. 

Since J is a real matrix, its imaginary eigenvalues must appear in pairs. 
So, we may assume 

o ' ( g )  = { ~ 1 , . . . ,  o~,~, _ i 6 1 , . . .  , _ i6r} 

with 

~1 ~ ~2 ~ "'" O/s < 0 ~ O/s+ 1 ~ . . . , - ~  am,  (2.6) 

and 

0 ~< 8 r~< 6r_ 1 ~< ..- ~< 6 2 ~< 6 x. (2.7) 
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B y  (2.5), we m u s t  have  

1 
a m < - -  (2 .8 )  

8 

and  

1 
OL1 < 8 '  (2 .9 )  

or  

1 
31 > - - .  (2 .10)  8 

In  w h a t  follows, a 1 a n d  ~1 will  be ca l led  the symmetry  index a n d  the 
ant isymmetry  index of t he  n e t w o r k  (1.8), r e spec t ive ly .  I t  wil l  be  shown  t h a t  
the  c r i t i ca l  va lue  of t he  d e l a y  where  the  t r i v i a l  so lu t ion  is d e s t a b i l i z e d  is 
c o m p l e t e l y  de sc r ibed  in t e r m s  of these  indices  a n d  the  n e u r o n  gain.  

LEMMA 2.2. 
define 

Assume  that (2.9) holds. For each a k with a k < - 1 / 8 ,  

1 1 
a r c c o s  . (2 .11)  

Then 

(i)  At  T = ~ ' (ak)  , (2.3) with A = a k has a pair of  purely imaginary 

simple roots +_ i ¢ 8  2a~ - 1 and all other roots have negative real parts; 
(ii)  For each .r ~ [0, r ( a k ) ) ,  all roots of (2.3) with A = a~ have negative 

real parts; 
(ii i)  There exists a smooth curve z = z ( r )  of  zeros of (2.3) with 2t = a~ in 

• 2 2 a neighborhood of (7 (ak )  , i ¢ 8  2ak2 _ 1 ) such that z ( T ( a k ) )  = z ¢ 8  ak  -- 1 
and Re d / d r  z('r)l~=~(,k) > 0; 

(iv) r ( a  k) > T(Otl) /Jr O~ 1 < O/k < - - 1 / 8 .  

PROOF. S u b s t i t u t i n g  z = ito, w > 0 in to  (2.3) w i th  A = a k l eads  to  

1 = ~ .~  c o ~ ( ~ ) ,  
(2.12) 

- ~ = ~ a  k s i n ( w T )  
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f rom which  we can  easi ly o b t a i n  

w =  ~/ f l 2 a : -  l ,  

T - -  

1 [  1 ] 
arccos + 2 n~r , 

¢fl2ak2 _ 1 f lak 

where  0 < arccos 1 / (  f l a  k) < ~- a n d  n is an  in teger .  T h e  least  such  posi t ive  
r is g iven  by  

1 1 
a r c c o s - - .  

r =  r ( a k )  - ¢ f l 2 a  ~ -  1 flk 

Thi s  shows t h a t  a t  r ( a k ) ,  (2.3) wi th  ~ = a k has a pai r  of  pu re ly  i m a g i n a r y  
zeros. Let  H,k(z  , r )  = z + 1 -- f l a k e  -z~. T h e n  ( a H , , ) / O z  = 0 t akes  the  
form 1 + [3akre  -z~ = 0. Co n s e q u en t l y ,  H,a = 0 a n d  ( 3 H , , ) / O z  = 0 im p ly  
r (  z + 1) = - 1, i.e., r = - 1 / ( z  + 1). T h i s  shows t h a t  a n y  m u l t i p l e  zero of 

• 2 2 H,k( z, r )  = 0 m u s t  be  real,  a n d  hence  z¢ f l  a k - 1 is a s imple  root  of (2.3) 
w i th  a = a k. 

W e  now show t h a t  (2.3) wi th  A = a k has  no  root  wi th  pos i t ive  real par t .  
Suppose ,  for the  sake of con t r ad i c t i on ,  t h a t  z = x + iy is a so lu t ion  of (2.3) 
w i th  ~ = a k such  t h a t  x > 0. As roots  of (2.3) c o n t i n u o u s l y  d e p e n d  on  r ,  
us ing  the  a r g u m e n t  in L e m m a  2.1 of [13], we can  show t h a t  the re  m u s t  exist  
÷ ~ (0, r ( a k ) )  such  t h a t  (2.3) wi th  h = a k a n d  r -- ÷ has  a pu re ly  imagi-  
n a r y  root  (no te  t h a t  zero is n o t  a root  of (2.3) wi th  a = a k and  r = r ( a k ) ) .  
Th i s  con t r ad i c t s  the  choice of r ( a k ) ,  a n d  t h u s  proves  (i). A s imi la r  a rgu-  
m e n t  can  be emp loyed  to j u s t i fy  (ii). 

As i¢fl2ak2 _ 1 is a s imple  root  of (2.3) wi th  ~ = a k a n d r =  r ( a k )  a n d  

as (OH~k(z , r ) ) / O z  ~: 0 at  z = i ¢ f l 2 a ~  -- 1 a n d  r = r ( a k )  , t he  ex is tence  of 
the  s m o o t h  curve  z = z ( r )  of roots  of (2.3) is g ua ran t eed .  S u b s t i t u t i n g  th is  
va lue  in to  (2.3) a n d  t h e n  d i f fe ren t i a t ing  b o t h  sides lead to 

dz( ) 
r=  r(a~.) 

f l a k z ( r  ) e -~(~)~ ~= 

1 -{- f~O~kTe z(¢)r r(a,.) 

Therefore ,  s imple  ca l cu la t ion  yields 

dz(  r ) 
Re dr I,=,(~O = 

/ 3 2 a ~ -  1 

[1 + r ( a k ) ]  2 + r 2 ( a k ) (  2 2 fl a k -- 1) 
> 0 .  

Th i s  jus t i f ies  (iii). 
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The  functions h i ( x )  = l / / ( ~ x  2 - -  1 ) and g l ( X )  = arccos 1 / x  are clearly 
positive and increasing in x ~ ( - 0% - 1), and so is their  composit ion.  This, 
together  with the definition of r ( a k ) ,  guarantees  the monotonie i ty  tha t  
r ( a  k) > z ( % )  if a 1 < a k < - 1 / [ 3 .  This  completes  the proof. 

Similarly, we can establish the following: 

LEMMA 2.3. Assume that (2.10) is satisfied. For each ~j with ~j > 1/[3, 
define 

1 1 
7(Oj) ¢ [ 3 2 ~  _ 1 arccos [3~j. 

Then 

(i) At  T = v(Sj), (2.3) with A = i&j has a pair of purely imaginary simple 

roots + i¢[3282 - 1 and all other roots have negative real parts; 

(ii) For each r ~ [0, T(Sj)), all roots of (2.3) with A = i~j have negative 
real parts; 

(iii) There exists a smooth curve z = z(r)  of zeros of (2.3) with A = ~7 in 

a neighborhood of (v(~j), i ¢ [ 3 2 ~  - 1 ) such that z(r(~j) )  = i ¢ [ 3 2 ~  - 1 

and Re d / d r  z ( z ) l , : , ( L  ) > 0; 
(iv) r(~j) > r(~l)  if ~1 > ~j > 1/[3. 

By using L e m m a  2.2 and L e m m a  2.3, we now know tha t  the lease value of 
the delay at  which the trivial solution is destabilized is given by 

r*  = m i n { r ( a l )  , T(~I) } (2.13) 

if both  (2.9) and (2.10) are satisfied. Let x* = x * ( a  1) be the unique solution 
in (0, zr /2)  of the equat ion 

x tan x 
1 1 

a r c c o s - -  (2.14) 

Then we have 
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LEMMA 2.4. 

63 

1 
T(($1) if ($1 > 

r*  = /3 sin x * ( a l )  

1 1 
r ( a l )  i f ~  < 61 ~< f l s i n x * ( a l ) "  

(2.15) 

PROOF. The  proof  is s t ra ight forward  after  we rewrite T ( ( ~ I )  = Z tan  z 
for z = arcsin 1 / ( /3~1) .  

Note tha t  the smooth  curve F given by 

1 1 
($1 = fl sin z * ( a l " ' )  a l  < - P -~ (2.16) 

is decreasing and divides the meaningful  region {(a3, ($1); aa < - 1/f l ,  ($1 > 
1/ f l}  in the p a r a m e t e r  ( a l ,  ($1)-plane into two par ts  in the upper  par t  of 
which r*  = r(($1) and in the lower par t  of which r*  = r ( a l ) .  As will be 
shown in next  section, this indicates the switch of mode  of oscillations. 

Note also t ha t  generically we should have 

1 1 
($1 ¢ for a l  < - --X. (2.17) /3 sin x*( Otl) P 

Under  this condition, we can use L e m m a  2.2 and L e m m a  2.3 and the general 
Hopf  bifurcat ion theory  for functional  differential equations (see, cf. [14, 15]) 
to obta in  the  following: 

THEOREM 2.1. I f  (2.9), (2.10), and (2.17) are satisfied, then system (1.8) 
has a branch of periodic solutions bifurcating from the trivial solution near 
T = T  *. 

The  bifurcat ion direction and the pa t t e rn  of oscillation and its s tabi l i ty  
will be addressed in the next  section. 
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DIRECTION, PATTERN, AND STABILITY OF BIFURCATIONS 

Rescaling the time again by v(t) = u(rt)  in (1.8), we get 

~(t)  -- ~ ' [ - v ( t )  + J F ( v ( t -  1))]. (3.1) 

Let 7 = ~ *  + /x. Then we get 

~(t)  = (7* + / x ) [ - v ( t )  + J F ( v ( t -  1))1, (3.2) 

where/z is the bifurcation parameter and Theorem 2.1 ensures the existence 
of a Hopf bifurcation from the trivial solution near/x = 0. The main focus in 
this section is to establish the algorithm to determine the direction, pattern, 
and stability of the Hopf bifurcation. 

We first consider the case where z * - - r ( a  1) < r(t~l). In this case, 
z * = r ( % ) = ( 1 / ¢ f l 2 a ~ - l ) a r c c o s l / ( f l a l )  and at / x = 0 ,  the lin- 
earization of (3.2) at the trivial solution has a pair of purely imaginary 
characteristic values ± i w  o = +_ir*¢[32a~ - 1 = +_i arccos 1/([3al).  
Clearly, there exists a nonsingular matrix P such that  

I o )  

Then the transformation v(t) = Py(t) leads to 

Let 

~/(t) = (z* + ~ ) [ - y ( t )  + J ~ p - 1 F ( P y ( t -  1))]. (3.4) 

~7(0,/x) = (z* + / x ) [ - t } ( 0 ) I d  + flS(O + 1) J~], 

where 8 is the Dirac function. For ~b ~ C([ - 1, 0]; R"), define 

h( Ix, ck) = (z* + t~)[ J ~ p - I F (  p 4 ) ( - 1 ) )  - f l J ~ b ( - 1 ) ] ,  

and 

0 
R ( / x ) ¢ =  h(/x,~b) 

- 1 ~ < 0 < 0 ,  
0 = 0 .  

- 1 ~ 0 ~ < 0 ,  
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Let 

Dom(A(/z)) = {~b~ 61([--1,0]; Rn); 4(0-)---- f C1 d'o(8'ix)•(8)} ' 

A( ix)¢ = q~. 

Then (3.4) can be formally rewritten as 

~, = A( ix )  Yt + R( ix )  Yt. (3.5) 

For 0 ~ C~[0, 1]; C n) and ¢ ~ O([-  1, 0]; CD, define an inner product by 

Let A*(0) be the adjoint operator of A(0) relative to the above inner 
product. Then 

Dom(A*(O)) = {0~ CI([o,I];C~); 0(0+) = --fld~?T(s,O)O(--s)}, 

A*(O)O = - ( b ( s ) ,  0 ~ < s ~ < l ,  0 ~ Dora(A*(O)). 

It is straightforward to show that i~o 0 is an eigenvalue of A(0) and A*(0) 
with corresponding eigenvectors given by q(0) = e/°~°°(1, 0 , . . . ,  0) T, - 1 ~< 0 

0, and by q*(s) = ei~°s(1 + T* - iw0)-1(1~0,.. . ,0),  0 ~< s < 1. More- 
over, <q*, q} = 1 and <q*, ~> = 0. 

In what follows, we follow the notations and algorithm developed in [15] 
for general functional differential equations. 

Let 

z( t)  = < q*, y,), 

w( z, ~)(  0 ) = Yt( O ) - 2 R e ( z q ( 0 ) ) .  

Then at ix = 0, (3.5) is reduced to an ordinary differential equation for a 
single complex variable 

+(t) = i,oo z(t)  + r ( o )  h( z, ~), (3.6) 



66 J. WU AND X. ZOU 

where 

h(z ,  2) = h ( w ( z ,  2) + 2 R e ( z q ) ) .  

Rewrite (3.6) as 

~(t)  = ion0 z ( t )  + g( z, 2) (3.7) 

with 

z 2 ~2 
W(Z, Z) ---~ W20" ~-  + WllZ~ "[- W02-" ~- "~- " " ,  (3.8) 

and 

z 2 22 z22 
g( z,-z) = g2o-~ + gHz~ + go2-~ + g2~-- 5-  + "".  (3.9) 

It is crucial to calculate explicitly g21 which we carry out in the following. 
First of all, note tha t  f" (0) = 0 and hence 

h(O, Yt) = r*[ Jo, P- '(  Pyt ( - l ) )  - flJ~, y t ( - 1 ) ]  

1 
= r*Jap -1 -df"(O ) 

( ~ PljYj( t -  1)) 3~ 
j = l  

p~j yj( t - 1) 
j = l  

+ h.o.t.  (3.10) 

Moreover, we know tha t  

yt( o) = w( z, 2) ( o ) + zq( o) + 20(o) 

= w(z~ 2 ) ( 0 )  + z e i ' o ° ( 1 , o , . . . , o )  T + 2e-i~o°(1 ,0, . . .  ,0) r 

(3.11) 

Let 

1 
b = (3.12) 

1 + r *  - iw o 
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and 

C = ( C1, . . .  , C. )  T = (C~j) = P 1 

Then 

g( z, ~) = 9*(0)~(  z, ~) 

= ~*(0)h(0 ,  yt) 

b v * f ' ( 0 )  .1 1 / ~n 1)) 3 ] ( j=lPljYj( t -  

( ~ ; = I P n j Y j (  t 1)) 3 ) 

+ h.o.t .  (3.13) 

( )3 
"bT*fm(0) tel i Clk i PkjYj( t 1) + h.o.t. 

6 k=l j=l  

¥* f ' (O) tea  
Clkp31( ze -'t°° + 7zeiC°°) 3 + h.o.t. .  

6 k=l 

Therefore, we have obtained 

LEMMA 3.1. 

bT-*f"(O) te 1 
y ~ - . o o  921 = 2 ~ qkPka3e 

6 k=l 

= b ~ * f " ( 0 )  te 1 ClkP~ 1 e -i°~°. 

Also, by direct calculation, we can establish 

LEMMA 3.2. I f  A( i t )  = a(p~) + ito( p~) is the smooth curve of zeros of 
H(A,  bt) = (A + "r* + /z)  - /3(r* + /z)Crl e - x  such that a ( O )  = O, to(O) = 
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Wo, then 

a ' (O)  = r * [ ( l +  z*) 2 +  ~o0 2] > 0 '  

= 

O)o(1 + z*) 

~'*[(1 + T*)2+ w0 2] > 0. 

According to the general theory in [15], the bifurcation direction and 
stability are determined by 

~[/'2 - -  

and 

Reel(0 ) Re g21 

/32 = 2Recx(0 ) = Re g21. 

Therefore, we have 

THEOREM 3.1. Assume that z( % ) < "7"((~1) and 

Then system (1.8) has a Hopf bifurcation of periodic solutions at r* = z( al). 
This bifurcation is supercritical ( resp., subcritical) and the periodic solu- 
tions are asymptotically stable ( resp., unstable) if % < 0 ( resp., % > 0). 
Moreover, the periodic solutions have the following representation: 

i 2a'(0)(T-- Z*) PRe(I,0, 0) r e i ~  -1 Ix( t , ' r )  = 2 _---~, . . . .  

+ O ( I r -  r*l). (3.15) 

In the case where ~'(~1) < r (%) ,  we can find a nonsingular matrix Q 
such that 

j ~ : = Q  1 j Q =  (o i) - 6 l  0 

0 0 
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Using similar arguments, we can show that 

g21 Dr,f , , , (O)6 1 -i~o 4 ~ . 2 
= e 6 1 ( i a 2 k -  alk)( qkl + zqk2) (qkl -- iqk2), 

k=l 

where 

Therefore, we have 

D = 
(1 + r * ) i -  w o 

2612[(1 + r * ) 2 +  w02] ' 

Q = (qo) ,  Q 1 = ( a i j )  " 

THEOREM 3.2. Assume that T(O~ 1) > T(61) and 

[ o'~ := Re Dr*e -'°'° (ia2k - -  alk)(qk, + zqk:) (qkl 
k=l 

(3.16) 

Then system (1.8) has a Hopf bifurcation of periodic solutions at r* = r(61). 
This bifurcation is supercritical ( resp., subcritical) and the periodic solu- 
tions are asymptotically stable ( resp., unstable) if o" a < 0 ( resp., o'~ > 0). 
Moreover, the periodic solutions have the following representation: 

i 2 o l ' ( 0 ) ( r - -  r*) QRe(i61,  6 , ,0  . . . . .  0) T e i ~  -1 r )  = 2 

+ O ( I r -  r*l). (3.17) 

Summarizing Theorem 3.1 and Theorem 3.2, we can conclude that (i) the 
bifurcation direction and stability are determined by the third order term 
f"(0)  of the input-output relation; (ii) as (a l ,  61) moves across the smooth 
curve 61 = 1 / (  13 sin x*(al))  defined in the last section, the mode of bifur- 
cated periodic solutions switch from (3.15) to (3.17). 
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4. SOME E X A M P L E S  

We demonstra te  the general results (Theorem 3.1 and Theorem 3.2) by 
two examples. 

EXAMPLE 4.1. We consider the all-inhibitory network, tha t  is, system 
(1.8) with 

1 
j -  

n - 1  

0 - 1  - 1  ... 
- 1  0 - 1  ... 
- 1  - 1  0 -.. 
- 1  - 1  - 1  ... 

- 1  
- 1  
m 1 

0 

n>~3 .  

In this case, 

1 
- 1 - - . . .  

' n - l '  ' 

and hence (2.8) and (2.9) hold if 

1 1 
< - - < 1 .  

n - 1  fl 

1} 
n - - 1  

Therefore, the critical value of the delay is given by 

= = arccos - • * 

and the associated purely imaginary characteristic values are 

Note 

1 (1 + ~'*) - i w  o 

1 + r* + i~o 0 (1 + r*)  2 + ~002 

(4.1) 
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and 

1 
Clk = Pkl = 7 -  

Vn 

as J is symmetric and v = (1, 1 , . . . ,  1) r is an eigenvector of J. Therefore, 

g21 = --'-bT*fm(O)( k=l~ ClkP2I) e-it°° 
(1 + r*) - iw  o 

= --T*f'(O)n[(1 + , , ) 2 +  w~] e-i~°" 

This implies that 

% = Re g21 

T*f"(O) 
nr.l[( + r . )2  + ~o.l~] [(1 + r*)cos w 0 -~o0s in  eJ0] 

T*f ' (0 )  
= - n[( l  + ~.,)2+coo2] [ ( 1 +  ~ '*)( - - -~)  - ~ ° ° s i n w ° ]  

[ 1 ] 
T* (1 + r * ) ~  + Wosin w 0 

n[(1 + z * ) 2 +  too 2] f"(0). 

Consequently, by Theorem 3.1, if f"(0) < 0 then system (1.8) has a super- 
critical Hopf bifurcation of asymptotically stable periodic solutions. 

EXAMPLE 4.2. We now consider system (1.8) with 

1 
,J= - 2 

0 1  
--1 - ½  - ½  . 

1 - ½  - 
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Note t ha t  J is nei ther  symmet r i c  nor an t i symmet r i c ,  bu t  ( r ( J )  = { -  ½, 
• 1 1 -+ ~]F}, and  hence the  s y m m e t r y  index a = - 5 and the  a n t i s y m m e t r y  

index 8 = ~ .  W e  assume fl = f ' ( 0 )  > 2. Then  (2.8)-(2.10) are satisfied. 

Note also t ha t  if 

1 1 
- - > ~ 8 =  

sin x ~ -  ' 

the  

vr2 1 
sin x ~< < 

and hence x < I r / 4 ,  x t an  x < ~-/4. On the  o ther  hand,  

1 o 
arccos = + 0 t an  0 > - -  

¢fl2lT2 -- 1 fla ~ 4' 

where 0 = a r c s i n 2 / f l .  Therefore,  by  L e m m a  2.4, we conclude t ha t  the  
cri t ical  value of the  de lay  is given by  

T* T ( ~ I )  a r c s i n - -  

and  the  associa ted  pure ly  imaginary  charac te r i s t ic  values are  

_+ ito 0 = _+ i a r c s i n - -  

Let  

q = 

1 0 0 
1 1 

0 

1 1 
0 
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Then 

A = Q  -1 

1 

0 

0 

0 
1 

1 

0 
1 

1 

and 

j~ = Q - 1 j Q =  

0 

1 

,/-5 

0 

1 

0 0 

1 
0 

2 

Comparing with Theorem 3.2, we have 

a l t  = 1, a12 = a l 3  = 0 ,  

1 1 
a21 = 0 ,  a22 = - ~ - - ,  a23 = V/~ , 

q~l = 1, q21 = q31 = 0 ,  

1 1 
q12 = 0 ,  q22 = ~ ' q32 = , V2 

D = 
( l + ~ ' * ) i - w  o 

Therefore, 

- (1 + ~'*)sin w0] f ' ( 0 ) .  0"~ = 16 LOgO COS (.0 0 

By Theorem 3.2, we can then conclude that  if f " (0)  < 0 then system (1.8) 
has a supercritical Hopf bifurcation of asymptotically stable periodic solu- 
tions at T*. 
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5. CONCLUSIONS 

For the Cohen-Grossberg-Hopfield delayed model of neutral networks 
whose interconnection matrix has only real and purely imaginary eigenval- 
ues, the symmetry index (the minimal real eigenvalue of the interconnection 
matrix) and the antisymmetry index (the purely imaginary eigenvalue of the 
interconnection matrix with maximal norm) are introduced. It is shown that 
these two indices and the neuron gain determine the critical value of the 
delay where a Hopf bifurcation occurs and describe the mode switch of the 
Hopf bifurcation. It is also shown that the third-order term of the input-out- 
put relation decide the bifurcation direction and stability of the periodic 
solutions bifurcating from the trivial solution. 

All of the analysis is carried out at the trivial solution and can be applied 
to any other equilibrium. However, our study is local in nature and concerns 
only the network dynamics very close to equilibria. The amplitude of 
periodic solutions obtained is small (0(~/T - ~* )) and the question whether 
large-amplitude periodic solutions exist when ~ is far away from T* is not 
discussed here. This question was addressed in [9, 10] for networks with very 
strong symmetry; answering this question for general networks seems to be 
a challenging problem. Moreover, the structure of the basins of attraction 
for each periodic solutions obtained is not described and a complete descrip- 
tion of the global dynamics is not at tempted but should be studied in the 
future. 

A more realistic model should be the one with distributed delay to 
account the stochastic element in the delayed interaction between neurons, 
see, cf. [6, 7, 12]. This will be discussed in another paper. 

This research was partially supported by the Natural Sciences and 
Engineering Research Council of Canada. The first author was also sup- 
ported by the Faculty of Arts Fellowship and Faculty of Arts Research 
Grant (York University). 
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