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§1. Introduction

In this paper, we consider the following parametrized equivariant
coincidence problem

(1.1) L,(x) = F(4, x), (4, x)eé,

where E and F are real Banach spaces which are also isometric representations
of the group S'={zeC;|z|=1}, {L;},cre i a continuous family of
equivariant Fredholm operators of index zero from E to F, and F is a
completely continuous equivariant mapping from the locally trivial S*-vector
bundle &:={(4, x)eR*xE; xeE,} to F, where E; is the space Dom (L,
equipped with the graph norm. We further assume that there exists a
2-dimensional submanifold M = R? x ES", where ES' = {x€E; gx = x for all
geS*'}, such that

(i) for every (A, x)eM, L,x = F(4, x);

(i) if (49, Xxo)€ M then there exist open neighbourhoods U, of 4, in R?

and U, of x, in E' and a C*-map 5: U,, > E5" such that M n(U,, x
Uy = {(h n(A); A U,,}.

Under this assumption, all points (4, x)e M are solutions of (1.1) (called trivial
solutions). One of the main purposes of this paper is to develop a Hopf
bifurcation theory which provides very sharp information about the maximum
continuation of nontrivial solutions (solutions which are not in M) of (1.1).

Our approach to the bifurcation problem of (1.1) is to employ an
equivariant resolvent K of L={L,},.g» to reduce the problem to a
corresponding problem for a certain completely continuous equivariant vector
field @(F): R* x F > F, and then to appeal to the method of Ggba and
Marzantowicz [21] based on the notion of the S!'-equivariant degree of [11]
as well as the complementing function method of Ize (cf. [25], [26]).
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The geometric essence of our approach can be roughly described as
follows: Let (49, xo)€ M be given such that L, — D, F(4,, xo): E;, > F is not
an isomorphism. Applying the well-known implicit function theorem and
Gleason-Tietze G-extension theorem we can obtain an open invariant
neighbourhood U of (4, xy) and a continuous bounded equivariant function
@:U—>R such that (4, x) #0 for all (4, x)eUnM and the system of
equations x = O (F)(4, x), ¢(4, x) =0 has no solution on dU. Therefore,
the mapping ?: (U, 0U)—> (R x F, R x F\ {0}) defined by ¥(4, x) = (¢(4, x),
x — Og(F)(J, x)) for (4, x)eU is an equivariant compact vector field, the S*-
degree S'-Deg (¥, U) = {degz, (¥, U)}>, is well defined, and S'-Deg (¥, U) #
0 implies that (44, x,) is a bifurcation point, i.e., in any neighbourhood of
(4o, xo) there exists a nontrivial solution of (1.1).

A computation -formula for S*-Deg (¥, U) is also provided for the sake
of applications. In particular, we identify R?> with C, define a: S' — R? by
setting o(z) = A, + pz for zeS* and for a sufficiently small p > 0. Using the
direct sum decomposition F=F, ®F, ®---@®F,®..., we can obtain a
- continuous mapping ¥ : $* > GLE (F) induced by /(z) = T,,,: F > F, and its
decomposition Yy =Y, @Y, ® - @Y, @... such that ,: S' - GLY (F)), k =
0, 1,..., where T; is the linearization of Id — @(F) evaluated at (4, n(4)). Then
we show that S'-Deg (¥, U) can be calculated by the well known Brouwer
degree according to the following formula

degz, (¥, U) = ndeg (det ), k=1,2,..

where deg denotes the classical Brouwer degree and # = £ 1, depending on
whether , is orientation preserving or orientation reversing.

The integer u deg (det y,) will be called the crossing number. Our results
indicate that if #deg(dety,) is not zero, then (4y, x,) is a bifurcation
point. Under further technical assumptions, we show that any bounded
component of the closure of the set of all nontrivial solutions of (1.1) in &
contains only finite number of bifurcation points and the sum of the crossing
numbers associated with these bifurcation points must be zero.

The established Hopf bifurcation theory for the nonlinear problem (1.1)
is then applied to the problem of finding nontrivial periodic solutions for a
class of parabolic partial differential equations with both delayed and advanced
arguments in the nonlinear term where the elliptic operator depends on a
parameter o. Following the work of [10], [19], [24], [28] and [47], we
introduce the unknown period of the periodic solution as a new parameter
such that the periodic problem can be reduced to the bifurcation problem of
a parametrized coincidence equation of the form (1.1) in a certain Sobolev
space. Using a technical result about the computation of a Brouwer degree
in a parallelopiped due to [12], we show that the aforementioned crossing
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number can be calculated from a characteristic equation which arises naturally
from the spectrum analysis of the linearization.

One of the motivations of this research is applications in chemical reactor
theory where a quotient of diffusivities in a reaction diffusion system is used
as a parameter (cf. [16] and [17]). Our research is also inspired by some
recent work of Memory [33], Morita [37], Yamada and Niikura [50] and
Yoshida [51] about the existence and stability of non-trivial time-periodic
solutions for a class of reaction-diffusion equations with delay. In particular,
Memory [33] has shown that a Hopf bifurcation occurs as the diffusion
coeflicient decreases through a certain continuous curve. This motivates us
to develop a Hopf bifurcation theory for general reaction-diffusion equations
with delay where the diffusion coefficients depend on a parameter.

Our general results provide an analog of the local Hopf bifurcation
theorem of Krasnosel’skii [31] and the globlal Hopf bifurcation theorem of
Rabinowitz [44] for the parametrized S'-equivariant coincidence problem
(1.1). The application of these general results to parabolic equations with
both delayed and advanced arguments can be regarded as an extension of the
Alexander-Yorke global Hopf bifurcation for ordinary differential equations
(cf. [1], [2], [3], [39]), functional differential equations (cf. [7], [81, [9], [38]
and [42]) and parabolic partial differential equations (cf. [17]). The novelty
of our research is the broad applicability of our results (allowing dependence
on a parameter in linear parts and allowing both delayed and advanced
arguments in the nonlinear terms of parabolic equations) and the methodology
employed (a purely topological argument based on equivariant topological
degree).

It should be mentioned that multiparameter bifurcation problems of
coincidence equations have been studied by a number of authors, we refer to
[11, [2], [3], [20] and references therein. Moreover, the global Hopf bifurca-
tion theory of parabolic equations without delay was discussed in [17]. Our
paper provides an alternative approach to the Hopf bifurcation problem based
on the S'-equivalent degree of [11] (we refer to [27] for another construction
of the S'-degree) and provides some results which can be easily applied to
reaction-diffusion equations with delay.

The organization of this paper is as follows: a parametrized coincidence
equation is introduced in section 2, and its bifurcation problem is discussed
in section 3. The application of our bifurcation theory to parabolic equations
with delayed and advanced arguments is given in section 4.

§2. Parametrized equivariant coincidence problems

Let E and F be real Banach spaces which are also isometric representations
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of the group G:=S'={zeC;|z|=1}. For a closed equivariant Fredholm
operator of index zero N: Dom (N) € E - F, we denote by Gr(N) = {(x, y)e
E x F; xeDom (N), y = Nx} the graph of N. Clearly, Gr(N) is a closed
invariant subspace of E x F, where we assume that G acts diagonally on E x F,
and we have the following commutative diagram:

Gr(N)
IJV% \Prz
E>Dom(N) -
where pr; and pr, are (continuous) equivariant projections on the first and the
second component, respectively. The space Dom (N) equipped with the graph
norm | - |y is a Banach representation of G, and in what follows it will be
denoted by E,. It is clear that N:Ey—F is a continuous equivariant
Fredholm operator of index zero.

We denote by Z¢:= % (E, F) the set of all closed equivariant Fredholm
operators of index zero from E into F, and by 0%:= O%(E, F) the set of all
closed equivariant linear operators from E to F.  0¢ is a metric space equipped
with the following metric

dist (N, N,) = d(B(Gr(N,)), B(Gr(N,))), N,, N,eO°(E, F),

where B()V') denotes the unit ball in the subspace VS Ex F and d(-, -) is
the Hausdorff metric on bounded subsets of E x F. It has been shown that
F§ is an open subset of 0% (cf. [14]).

Throughout this section, we assume that P is a topological space, and
{L;}ep = 0 is a continuous family of equivariant Fredholm operators of index
zero, parametrized by P i.e., for each Ae P, L, e #§ and the mapping n: P —» 0¢
defined by n(1) =L, for AeP is continuous. We now define n: - P as
follows

¢:={(4 x, y))ePxExF;xeDom(L,), y=L,x},
n(4, x,y) =4 for (4, x, y)el.
It has been shown that the Banach vector bundle z: ¢ — P is a locally trivial

G-vector bundle (cf. [147).
Let

&:={(4 x)ePxE; xeE, }

and let p;: £ — & be given by py(4, x, ) = (4, x), (4, x, y)e&.  Since for every
4€P the projection pr: Gr(L;,) > E;:= E;, is an equivariant isometry, the
mapping p,: ¢ — & gives us the natural identification of the G-bundles ¢ and &.
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Now, we can define the vector bundle morphism L: & — F, where F is
viewed as a bundle over a one-point space, by '

L(), x) = L,x, (4, x)eé.

Let X be a given subset of P. An equivariant resolvent of L over X is
a G-vector bundle morphism K: X x E — F such that

(i) for every leX, K,;: E—F is a finite-dimensional linear operator;

() for every ieX, L, + K;: E, - F is an isomorphism.

By FRE(L, X) we denote the set of all equivariant resolvents of L over X.
Contrary to the non-equivariant case, it may happen that an equivariant
Fredholm operator of index zero has no equivariant resolvent. Therefore, in
general, FR%(L, X) may be an empty set. Nevertheless, as the following result
shows, in certain situations the existence of an equivariant resolvent of L at
one point A,e X implies that FR(L, X) # @.

Lemma 2.1. Let X be a compact contractible subset of P such that
FRO(L, {Ao}) # @ for some loeX. Then FRE(L, X) # Q.

Proof: Suppose that K; e FRY(L, {,}), i.e., K, ,: E—F is an equivari-
ant finite dimensional operator such that L, + K, : E; —F 1s an isomorphism.
We notice that since G is a compact Lie group, if p: F - F is a projection
onto an invariant finite-dimensional subspace F, then

2.1 p(x) =J 9~ 'plgx)du(g),  xeF,

where du(g) denotes the Haar measure on G, is an equivariant projection onto
p(F). Therefore there exists a finite-dimensional invariant subspace F, & F
such that ImK, < F, and ImL; + F, =F for all ileX.

In fact, for any A*e X, since Im L;. is an invariant subspace of finite
codimension, there exists a projection p,.: F—Im L;,. By using the average
(2.1), we can get an equivariant projection p;.: F—1Im L;. and an invariant
subspace Ker p,. of F such that Kerp,,®ImL,.=F. By using the local
trivialization of & and the fact that the set of isomorphisms is open with
respect to the operator topology, we can find a neighbourhood U(A*) of A*
such that Kerp,,®ImL; =F for every AeU(4*¥). Now because of the
compactness of X, we can construct a finite covering, say, U(4y), U(4,),...,
U(4,), and finite dimensional invariant subspaces Ker p; ,...,Ker p; such that
Kerp, ®ImL, =F for every AcU(4;) and i=1,...,n. Then it is easy to
verify that the space F, defined by

Fo:=Kerp,;, +-+Kerp, +ImK,,
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satisfies the required properties.

Let I — Q: F - F be an equivariant projection onto F,, hence Q: F - F
is an equivariant Fredholm operator of index zero. It follows that the so
called index bundle over X,

B:=B(L, X) = {(4 x)e&|y; xeKer Qo L,}
= {(4 x)e&|x; L;xeKer Q = F,}
is a locally trivial and finite-dimensional (dim B = dim F,) G-vector bundle

over X. Since X is contractible to the point 4,, there exists a G-equivariant
trivialization of the bundle B, namely

B-L.xxB,

We notice that for every xe B, ,

(L + K) () =T — Q) (L,, + K, ) (x) + QL,,x + 0K, x
= -0)(L,,+K,)(x)eKerQ =F,.

Therefore, since L; + K, : E;, — F is an equivariant isomorphism, we know
that (L;, + K;,)|g,,: Bi, = Fo is an equivariant isomorphism. Consequently,
we obtain the following equivariant trivialization of the vector bundle B

B> X xF,

N/

Since B is a G-subbundle of X x E, by using the averaging (2.1) over G, one
can easily construct a G-vector bundle morphism p: X x E - X x E which is
a fiberwise equivariant projection onto B.

Now, we can give an explicit formula for the resolvent K e FRS(L, X).
We put for (4, x)e X x E,

K;(x) = ¢,(pu(x)) — L;(pa(x)).

It is clear that K,:E—F is a finite-dimensional equivariant operator.
Moreover, for any Ae X we have
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(Ly+ K))x=0(L,+ K)x+I—-Q)(L, +K,)x
=QL,(I —p)x+{—=Q)L,x+;op(x)—(I— Q)L ;40 pi(x)
=QL;(I = p)x+y;op;(x) + (I — QL,(I — p,)(x).

Thus L; + K, is an equivariant isomorphism. This completes the proof. []

In the remaining part of this section we assume that X < P is a compact
contractible set such that FR%(L, X) # . We also fix an equivariant resolvent
KeFRE(L, X).

Let F: & —F be an equivariant mapping. We are interested in the
following parametrized equivariant coincidence problem

2.2) Lix=F@x), (Lxeély.

It follows from the assumption that the problem (2.2) can be reduced to the
following equivariant fixed point problem:

2.3) y=0¢F)4y), (4 yeXxF,

where R;:=(L; + K;)"': F>E, is an equivariant isomorphism and @(F):
X xF-F is given by

(2.4) Ox(F)(4, y) = F(4, R,(»)) + Ki(R,(»)), (4, y)eX xF.

Evidently, @(F) is a completely continuous mapping (i.e. @¢(F) is continuous
and O(F)(X x B) is relatively compact in F for every bounded subset B = F)
if and only if F: & - F is completely continuous.

Summarizing the above discussion, we conlude that if F is completely
continuous and FRY(L, X) # @, then the parametrized equivariant coincidence
problem (2.2) can be reduced to the fixed point problem (2.3) for the
parametrized equivariant completely continuous mapping Oy (F).

§3. S'-degree and the bifurcation theory

Throughout this section, E and F are given real Banach isometric
representations of the group G:=S*, P=R? and {L,},p is a continuous
family of equivariant Fredholm operators of index zero which satisfies the
following condition

(A.1) there exists A*eP such that FRE(L, {1*}) # @.

Assume that there is an isometric Banach representation E such that we
have the following injective morphism of G-vector bundles J: &—>PxE
such that for every AeP, J,: E, —E is an equivariant compact operator.
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Assume also that F: PxE—F is an equivariant C'-map. We define
F: & —F as the composition F = FoJ. Obviously, F is completely continuous
and equivariant.

Furthermore, we assume that there exists a 2-dimensional submanifold
M < R* x E°, where E¢:= {x€eE; gx = x for all geS'}, satisfying the following
conditions

(A) For every (A, x)e M, xeDom (L,), and L,x = F(4, x),
(B) If (%, xo)€ M, then there exist open neighbourhoods U,, of 4, in R* and
U,, of xo in E® and a C'-map n: U, - E® such that

Mn(U,{O X Uxo) = {()'7 rl(l)): }'E Ulo}‘

By (A), all points (4, x)e M are solutions to the following coincidence
problem

(3.1) Lix=F(,x), (i x)eé.

We call all these points trivial solutions. All other solutions of (3.1) will be
called nontrivial. A point (4y, xo)e M 1is called a bifurcation point if in any
neighbourhood of ‘(4y, x,) there exists a nontrivial solution for (3.1).

As discussed in the previous section, the problem (3.1) restricted to any
given compact subset X of P can be reduced to the following parametrized
fixed point problem

(3.2) y=0x(F)(4y), (4 yeXxF,

where K€ FRE(L, X). We define My:= {(4, (L, + K,)x); (4, x)e M n(X x E)}.
Evidently, (4, y)e My, iff (4, R,y)e Mn(X xE). Thus the points from M,
represent the trivial solutions to the problem (3.1) restricted to the subbundle
€lx. We define a mapping f: X xF-o>F by f(4y)=y— O0rF)A4 ),
(4, yeX x F. Clearly, f is an equivariant compact field of class C* and

D,f(4 y) =1d — Ox(DF(4, X)),  x=R;(y),

where D, and D, denote the derivatives with respect to y and x,
respectively. Evidently, D, f(4, y) is a Fredholm operator of index zero, and
if (4, y)eX xE%, (in particular, if (4, y)e M,), then D,f(4,y) is also an
equivariant operator. It follows from the implicit function theorem that if
(o> Xo)eMN(X x E) is a bifurcation point, then the derivative D, f (4o, ¥o)s
Xo = R; (yo), is not an isomorphism of F and this is equivalent to the fact
that L, — D, F(Ao, xo): E;; > F, x5 = R; (vo), is not an isomorphism. In this
case we say that (1y, xo)e M is L-singular. We set

= {(, x)e M; (4, x) is L-singular}.
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In order to obtain bifurcation results for the problem (3.1), we are going
to apply the method of Ggba and Marzantowicz (cf. [21]) based on the notion
of the S'-degree (cf. [11]) and the complementary function method of Ize (cf.
[25], [26]).

For the sake of completion, we briefly describe here the infinite-
dimensional version of the S'-degree. For details, we refer to [11] and
[12]. Consider an infinite-dimensional Banach isometric representation V' of
G=3S'. Let U< R x V be an open bounded invariant subset and f: (U, 0U)
— (¥, V\{0}) be an equivariant compact vector field on U. Then there is
defined the S'-degree of f with respect to U given by

S'-Deg(f, U):= {degy (f; U)},

where H runs through the family of all closed proper subgroups of S' and
degy (f, U)eZ. The basic property of S'-degree is that the inequality
S1-Deg(f, U) # 0 implies the existence of a solution in U to the equation
f(u, x)=0, (u, x)eU. More precisely, we have the following standard
properties. of the §'-degree:

(i) (Existence Property). If degy(f, U)#0, then f~'(0)nU" # @, where
U" ={yeU; G,=2 H} and G, denotes the isotropy group of y;

(ii) (Additivity Property). If U,, U, are two open invariant subsets of U
such that U,nU, =0 and f~*(0) < U,UuU,, then

Sl'Deg (f’ U) = Sl'Deg (fa Ul) + Sl'Deg (f’ UZ):

(i) (Homotopy Invariance Property). If h: (U x [0, 1], oU x [0, 1]) - (V,
V\{0}) is an S'-equivariant homotopy of compact vector fields, then
S*-Deg (ho, U) = §'-Deg (hy, U);

(iv) (Product Property). Suppose that W is another Banach isometric
representation of S' and Q is an open bounded invariant subset of W such
that 0eQ. Define g: UxQ->V@®W by g(x,y)=(f(x),y). Then S!-
Deg (g, U x Q) = S*-Deg (f, U).

In what follows, we want to show that the S'-degree for equivariant
compact vector fields can be extended to the S*-degree for a continuous family
of Fredholm operators {L,},., associated with the problem of finding non-
trivial solutions to the equation (3.1) for Ae X, where X < P is the closure of a
bounded open subset of R2.

For this purpose, we use Lemma 2.1 to find K e FRY(L, X) such that the
problem (3.1) can be reduced to the problem of the existence of nontrivial
solutions to (3.2). Let U be an open invariant subset of P x F such that
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Uc X xF,and ¢: U — R be a continuous bounded equivariant function such
that (4, y) # 0 for all (4, y)e UnMy. Such a function is called a complemen-
ting function. Clearly, if ¢: U — R is a complementing function, then all
solutions to the following parametrized system of equations

¢4 y)=0

are nontrivial solutions of the equaiton (3.2). Consequently, if (4, y) is a
solution to (3.3), then (4, R;y) is a nontrivial solution to (3.1) in the set
U:= {4, Ryy); (4, y)eU}. If we further assume that the system (3.3) has no
solution (4, y)edU, then we can define the S'-coincidence degree as follows

(3.3)

S*-Deg ([L, F, ¢], U):= S*-Deg (¥, U),
where ¥: U—>RxF, U< PxF < Rx(RxF), is given by

P, y) = (@ ),y — OkF)(4 ), (4 yel.

Therefore, by the Existence Property, if S'-Deg([L, F, ¢], U) #0, then we
can conclude that there exists in U a nontrivial solution of the problem (3.1).

Obviously, the important part of the above approach is the construction
of a complementing function and the computation of S'-Deg([L, F, ¢], U)
which we are going to achieve in the remaining part of this section. First,
let U, be an open bounded subset of M whose closure is contained in a local
neighbourhood of the type described in the condition (B), i.e. Uy < {(4, n(4));
AeU,} c M. We are interested in finding a bifurcation point in U,. For
this purpose, we assume that I":=Uon4 # @, and dU,nA4 =@. Next, we
define a special neighbourhood of the set I':= {(J, i(4)); (1, n(A))e '}, where
n(4) = (L, + Ky)n(4), by

U(r):={(4 »)eR* xF; LeV,, lly —iA)| <7}

where r >0 and ¥}  is the projection of U, to R*. By the implicit function
theorem, there exists a sufficiently small » > 0 such that y £ @x(F)(4, y) for

all (4, y)e U(r) satisfying Aed¥,, and ||y —#(4)] # 0.
Let p >0 be given and suppose that 7,: U, - [0, p] is a continuous
function such that t5'(0) = I" and 14 *(p) = 0U,.

Definition 3.1: We say that a G-equivariant function 6: U(r) > R is an
auxiliary function if

(1) 04 y) = — to(4 R,(y) for all (4, R,()e U,

(i) (4, y)=rif [y -l =r
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The existence of an auxiliary function is guaranteed by the well-known
Gleason-Tietze G-extension theorem (cf. [5]).
Note that if 6 is an auxiliary function, then the system

{y =0(F)L Y, (4 yelUr)
6(4, ) =0

has no solution in 0U(r), and consequently we can define the S'-coincidence
degree

S'-Deg ([L, F, 6], U(r)):= S*-Deg (¥,, U(r))
where
SU(‘J(A'ﬂ y) = (0(},, y), y—- @K(F)(ia y))a (is y)e U(r)

It should be mentioned that the S*-Deg([L, F, 6], U(r)) does not depend on
the choice of 7, or the auxiliary function §. This is due to the homotopy
invariance of S!'-degree and the fact that if #' and #* are two auxiliary
functions, then for every te[0, 1], t0* + (1 — t)6? is also an auxiliary function.

Proposition 3.1. Assume that the hypotheses (A.1), (A) and (B) are satisfied.
Let Uy = M be defined as above and r >0 be a sufficiently small number. If
S'-Deg ([L, F, 6], U(r)) # 0 then the set I' = Uyn A contains a bifurcation point
for the equation (3.1). More precisely, if degy ([L, F, 8], U(r)) # 0, then the
equation (3.1) has a sequence of non-trivial solutions in U bifurcating from I

Proof: We first show that there exists a complementing function ¢: U(r)
— R such that

S'-Deg([L, F, 0], U(r)) = S'-Deg ([L, F, ¢1, U(r)).

Indeed, by applying the Homotopy Invariance Property of S'-degree to the
equivariant homotopy

(h(4, y, 1), y — Og(F)(4, y))
where ¢ > 0 is a sufficiently small number and
h(s y, )= 00, ) —te, (1 »eU@), tel0, 1],

we obtain S!-Deg ([L, F, 6], U(r)) = $*-Deg ([L, F, h,], U(r)) for all te[0, 1].
In particular, we have

S'-Deg ([L, F, 61, U(r)) = $'-Deg ([L, F, ¢1, U(r))

where ¢ = h; is a complementing function.
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We then remark that for a sufficiently small number r > 0
S'-Deg ([L, F, 01, U(r) = S'-Deg (¥, U(")
where

P2, 1) = 00, y), y = Ok (DF (A (A, (4 y)eU.

Therefore S'-Deg([L, F, 6], U(r)) does not depend on r, and thus the
bifurcation result follows. O

In order to be able to use Proposition 3.1, we need to develop a
computation formula for S'-Deg([L, F, ], U(r)). For this purpose, we make
the following assumption:

(A.2) There exists a diffoomorphism x: D = {zeC;|z| <1} - ¥,, such that

U, = {(x(2), n(x(2))); ze D}.

It is well known that the representation F has the following direct sum
decomposition

F=F,®F, ®---®0F,®...,

where F,, k > 0, are isotypical representations of G = §! such that F, = F¢ and
for all xeF,\{0}, G, = Z,. The spaces F, are closed invariant subspaces of
F, and if k>0, then F, can be endowed with a natural complex
structure. Indeed, for xeF,, we can define the multiplication of x by the
number i by

i%x = ey,

s o}
We put Ft:= F,. The space F! has the natural complex structure as we
p K p p
k=1

described above and moreover, an R-linear operator B:F*—F* is S!-
equivariant if and only if it is a C-linear operator (with respect to the above
complex structure on F*) and B(F,) = F,. We denote by GL,(F*) the group of
all linear automorphisms of F* of the type “Identity + a compact linear
operator”, and by GLS(F') we denote the subgroup of GL,(FY) of all
equivariant automorphisms. It has been shown (cf. [43]) that if dim F, = oo,
k=1,2,..., then there is the following homotopy equivalence

it lim GL(m, C) = GL¢(F,) = GLS(F,).
Therefore, the fundamental group =, (GL¢(F,)) = Z. Since we can identify the

set of all homotopy classes of continuous maps from S* into GL¢(F,), denoted
by [S!, GL¢(F,)], with n,(GLS(F,)) = Z, we have the following isomorphism
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Ve: [S7, GLEF)] — Z.

Moreover, it is well known that restriction of V) to the subset [S!, GL(m, C)]
can be described by

Vi[A] = deg (det (4)),

where A4: S* - GL(m, C), det: GL(m, C)—> C* = C\ {0} is the usual determinant
homomorphism and deg denotes the classical Brouwer degree.

In the remaining part of this section, we assume that the hypotheses
(A.1), (A), (B) and (A.2) are satisfied.

For every Ae UA—O, we define a linear equivariant operator T;: F - F by

T,y =y — Og(D.F(4, n(A))(4 y),  yeF.

Therefore, by the definition, An U, = {(4, n(4))e Uy; T,¢ GL.(F)}. We define
T¥:F, > F, by TFi=T,|p, k=0,1,2,....

We identify R* with C, and define a: S* —» M by setting a:= k|g;. Then
the formula

Y(z)=T,,: F—F

defines a continuous mapping : S' > GLI(F). It follows from T(F,) < F,
that

lﬁ =¢0@¢1®"'@¢k@...:
where
Yo: S — GLS(F), k=0,12,....

Since GL.(F,) = GL(F,) has exactly two connected components: GL; (F,)
(containing the identity) and GL; (F,), we can define '

£yim {1 %f Wolz2)eGL} (Fy)
—1 if Yolz)eGL; (Fy).
Finally, for k=1, 2,..., put
| 7= 1ll):= EFil[¥).
We can now state a computational formula for S'-Deg ([L, F, 6], U(r)).

Proposition 3.2. Assume that the hypotheses (A.1), (A), (B) and (A.2) are
satisfied. Let U, be defined as above and r>0 be a sufficiently small
number. Then '

Sl'Deg ([L> F> 0]» U(T")) = {deglk ([L» F) 0]5 U(r))}kENa
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satisfies
deglk ([La Fa H]: U(V)) = ’yk(F)
for k=1,2,3,....

Proof: By the Homotopy Invariance Property of the S'-degree and by
the assumptions (A), (B), (A.1) and (A.2), we obtain that

S'-Deg ([L, F, 61, U(r)) = S'-Deg (¥, U(r)),

where ¥(A, y) = (0(4, y), T,y). Since the space GLZ(F') is homotopically
equivalent to Ign GL(m, C), by the Product Property of S'-degree, we can

find a family T,: F > F, leV,,, of the form T, =1 — C,, such that Im C, is
contained in a fixed invariant finite-dimensional subspace F of F, and

S'-Deg (¥, U(r)) = S'-Deg (7, U),
where U = U(#)n(R? x F) and

¥ U n(R? x F) — R x F, P, y) = (00, y), Ty

for (4, y)e U(r) n(R? x F).
Similarly to the infinite-dimensional case we have the following isogenic
direct sum decomposition of the space F:

F:FO®F1(‘DF2®®Fm5
where G, =S for yeF, and G, = Z, for all yeFN\{0}, k=1,...,m. By the
construction of the S!-degree (cf. [11]),
S1-Deg (P, Ur)n(R?* x F)) = S1-Deg (¥ - &, U,(r)n(R* x F)),

where U, (r):= {(4 y)eR*x F: A1 <1, |yl <r} and &: U,(r) > U(r) is given
by (4, y) = (k(4), 7(A) + »), (A):= (L, + K;)n(1). We assume here that » > 0
is a sufficiently small number so that & is a C!-diffeomorphism. In order to
simplify the notation we will denote by ¥ the mapping P& We have that
for every zeS*' = C, Tx(z)‘iki F, —» F, is an isomorphism. Put d~5,c(z):= TK(Z)Iﬁk.
Then -

@,: ' — GLS(F) = GL(n,, ), k=1,...,m,
where n, = dim (F). Since 7, = aOVk([é'?k]), by applying an appropriate

deformation to @ we can obtain a modified mapping, denoted by @, such
that for all k=1, 2,...,m,
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®,: S — GLS(F,) = GL(n,, O
is exactly given by the formula
BuD) (1, ZasonsZu) = (@21, Zovs ), 2EST,
Now, we can apply the results from [11] to conclude that

degz, (f/’ ﬁ) = Yk-
O

As a corollary of Propositions 3.1 and 3.2, we obtain the following:

Theorem 3.1 (Local Bifurcation Theorem). Assume that the hypotheses
(A), B) and (A1) are satisfied and let U, be an open bounded subset of M
such that 8UynA =0, I' = UynA # D and the assumption (A.2) is satisfied. If
vo(I") # 0, then I' contains a bifurcation point for the equation (3.1). Moreover,
there exists a sequence {(A,, x,)} of non-trivial solutions of (3.1) such that the
isotropy group of x, contains Z, and (4,, x,) converges (in the topology of &)
to a trivial solution (Ay, xo)el. O

For a global Hopf bifurcation, we need to assume

(A.3) The submanifold M is complete and every L-singular point (4, x) of M
is isolated in M.

In this case for a given (1,, x,)€ 4 we introduce the following notation:
Definition 3.2: Let (4, x,) be an L-singular point. We say that
Ulp, 1) = {(4 Y)eR* x F; |1 = dol < p, |7i(A) — yll <7}

where p, r >0, is a special neighbourhood of (A, x,), if (Ay, X} is the only
L-singular point in U(p, r), and y # Ox(F)(4, y) for (4, y)e U(p, r) satisfying
|2 — 4|l = p and y #7(4).

In this case we can also introduce the definition of an auxiliary function,

namely, a G-equivariant function 0: U(p, r) - R satisfying the following
conditions:

(i) 8(A #(A) = —|A — Ao| for all 4 such that |1 — 4, <p
(i) 64 y)=rif [7(4) =yl =r

The existence of 6 follows immediately from the Gleason-Tietze
G-extension theorem (cf. [5]). Note that if @ is an auxiliary function, then
the system

(3.4) {y = Ok(F)(4, y), (4 y)eUlp, 1)
64, y)=0
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has no solution in dU(p, r); and consequently we can define again the
S*-coincidence degree

S'-Deg ([L, F, 6], U(p, r)):= S*-Deg (¥,, U(p, r))

where

glﬂ(ls J’) = (0(/1’ y)> y—= @K(F)(}V:' y))7 (’L y)e U(p5 r)'

Definition 3.3: Suppose that U(p,r) is a special neighbourhood of

(Ags x¢). The function 8,: U(p, r) » R defined by
2
ol 1) =T — 11— do?

is called an Ize function.
By the implicit function theorem, it can be easily shown that if r is

sufficiently small, then y # @(F)(4, y) for (4, y)e U(p, r) with |y|| =r and
|4 — Aol = %p. Therefore the system

(3.5) {y =60x(F)(% ), (LyeUlpn

0o(4, y) =0

has no solution in dU(p, ), and consequently we can define the following
S!-coincidence degree

Sl-DCg ([Ls Fa 00]: ﬁ(pa F))Z= SI'Deg (5”603 U(ps r))

where

5Uﬂo(ia y) = (00(1» y)9 y - @K(F)(/‘L? y))s (/{5 y)E U(pa V).

By using a homotopy argument, we can verify that the degree
S'-Deg([L, F, 0], U(p, r)) does not depend on the choice of the special
neighbourhood of (4, yo), yo = (L,, + K, )Xo, and the auxiliary function
0. Moreover, we can prove the following equality

S'-Deg([L, F, 01, U(p, r)) = $*-Deg ([L, F, 6,1, U(p, r)).

For details, we refer to [21].

Denoting by v,(4¢, x,) the element y,({4,, Xo}) constructed, as before, for
the special neighbourhood U(p, r), we are now in the position to state the
following :

Theorem 3.2 (Global Bifurcation Theorem). Assume that the hypotheses
(A), (A.1) and (A.3) are satisfied. Let & denote the closure of the set of all
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nontrivial solutions of (3.1) in & Then for each bounded component € of &,
the set €nNM is finite. Moreover, if €NM = {(Ly, x),....(A4;, X,)}, then for
every ke N,

(3.6) YeAis X1) 4 Vlday X} 4 - 4 %ldgs Xg) = 0.

Proof: The first conclusion is an immediate consequence of the
assumption (A.3). We put %:= (L+ K)(%) = R*> x F, and choose r, p > 0 such
that for i=1,...,q, U;= Uylp, r) is a special neighbourhood of (4, x; and
U;n Uj =0 for i#j. Let~l7 =U,U-U ﬁq and Q, = R?xF be an open
invariant subset such that ¥\U = 2, and 2, nM =@.

Next, we find an open invariant subset © of R*xF such that
¢<cQcQ,uU and QN7 =0, where &:=(L+ K)(¥). The subset Q is
bounded. By the implicit function theorem, there exists r,, po > 0 such that
0<ro<r, 0<py<p, Ui:=Ulpo, ro) SO, FI0Up, 1) = Uilpos 1o)s i =
1,2,...,q. We set U=U;U---UU,, and construct a continuous equivariant
function §: QU U — R such that

(1) e(i’ Y) = - |l_il| for (/L y)EijinMs i= 19 2,,q,
(i) 04 y)=r, for (4 y)eQ\U.
Define @: 2 > R x F by

D(4, y) = (0(4, y), y — Ox(F) (4, ¥)).

By the definition, @ ~1(0) = Z, thus since 0Q2n% =@, S'-Deg (&, Q) is well
defined. We now define the following homotopy

H: (2 x[0,1],02 x [0, 1]) — (R x F, R x F\{0})
by
H(A y, 1) = (x(4, y, 1), y — Ok(F) (4, y)),
where
24y, 1) = (1 = 1)8(4, y) + tp.

Clearly, H,(J, y)=®(4, y) and H,(4,y)#0 for all (4 y)eQ. Therefore
S'-Deg (@, 2) =0. On the other hand, " }(0) = ¥nU = ¥ nQ. Therelore
S!'-Deg (@, 2) = S'-Deg (@, U) = 0,
and consequently, by the Additivity Property of S*-degree,

Vildi, Xq) 4 -+ PelAys x) = 0, keN.

This completes the proof. U
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Remark 3.1. Theorem 3.2 still holds if we replace P=R?> by Rx R,
where R, = (0, c0). In this case, a component C of S is said to be bounded if

sup {dist (4, (R x R})) + |Al + |x|.,; (4, x)e C} < 0.

§4. Hopf bifurcation for functional parabolic partial differential equations

4.1. Description of the problem. Suppose that Q is a bounded regular region
in R*. For a scalar-valued function v: R x 2 > R and teR, v, denotes the
function v,(z, x) = v(t + 1, x) for (1, x)e R x .

Let m be a given positive integer. We consider the following system of
functional parabolic partial differential equations

J . )
P u'(t, x) + Py(a, x, D)u' = fi(ul,...,u™, «)(x)in R x Q,

4.1) ,
Bi(a, x)y =00n Rx0Q,i=1,...,m aeR,
where
. "9 . o . ) )
(EP) Pi(o, x, D)u! = — Z — (a,‘cf(a, X) — u'(t, x)> + ab (o, x)u'(t, x)
ki=1 0% ox,

is an elliptic operator of the second order, i.e. there exists a constant
¢ > 0 such that

m

Z a;;,,(oc, )&, =] €)?
k=1
for all xeQ, aeR,i=1,...,mand ¢ =(¢,,....¢)eR". We assume that
all coefficient functions a ,, dhe C*(R x 2; R);
(BD) The boundary operators B;(«, x) are given by either

Bi(«, x)u'(t, x) = u'(t, x)

or

Bi(o, )6, ) = (o 90(t, X) + ai W, %),
n

where y;,€ CY(R x 02; R), i = > a0 x)v,(x) 2 and v,(x), / = 1,...,n, are
on' k=1 6xk
the components of the outward normal v(x) to 022;
(FZ) The functions f;: [C(R; L*(2, R))]™ x R — L*(2; R) are of class C* and
bounded on bounded sets, i =1,...,m.

It will be convenient to write (4.1) in the more succinct vector notation:
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iu(t, x) + P(o, x, D)u = f(u,, a)(x) in Rx&,
4.2) o

B(o, x)u =0 on RxdQ,aeR,
where u = col(u', u?,...,u™, wu,=col(u},...,u"), P(x x, D)u = col(P(a, x,
Dyu',...,P,(a, x, D)u™), B(a, x)u = col(By(x, x)u',...,B,(x, x)u™) and f: C(R;
L*(Q; R")x R—L*(2; R™) is defined by f(u,, a)(x)=col(fi(u},...,u", a)(x),...,
Jnltag s..out, 0) (x)).

Observe that we allow the case where f(u,, «)(x) may depend on the
values of u(s, -) for s >t, though in typical applications, the functional is
nonanticipatory.

Our purpose is to find nontrivial periodic solutions of (4.2) when o varies
over R. Following [10], [19], [24], [28] and [47], we introduce the unknown
period f explicitly as a new parameter in the equation and normalize the
period by making the following change of variable

v(t, x) = u<%t, x).

Then the original periodic problem is reduced to finding a nontrivial family
(o, B, v) which satisfies

ﬁ v(t, x) + ; P(a, x, D)o = ;f(v,,,,, o) (x) in RxQ,

ot

4.3) B(o, x)u=0 on Rx0Q2, aeR,
v(t, x) = v(t + 27, x) in RxQ,

where

v, 5(1, Xx) = v(t + PBr, x) for (r, x)eR x Q.

4.2. Abstract formulation of the problem. We put S = R/27Z and introduce
the following spaces

Hyl = {pe H (S x Q); B(w)p = 0},

where H*?(S* x Q) is a Sobolev space of functions with weak derivatives of
order k in S' and weak derivatives of order 7 in Q (cf. [48]),

Dom (L, ) = {u = col(u’,...,u™ e L*(S* x Q; R™);
ueApl, for i=1,..,m}.
For every (a, f)e R x R, we define the operator

L.p: Dom (L, ;) = L*(S' x Q; R™) — L*(S' x Q; R
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by 0 1
L, t, x) = —olt, x) + — P(a, x, D)v.
@pV(t, X) o (t, x) 5 ( )

It is well known (cf. [32], p.80, Theorem 1.31) that for every
(¢, f)e P:= R x R the linear operator L, is a closed Fredholm operator
of index zero.

In order to make our notation compatible with those in Section 3, we put

E=F=1%*S'xQ;R"
and

E = C(St; L*(Q; R™).
As was verified in Section 2, for every A= (o, f)e R x R,, the operator
L,=Lgs:Dom(L;) = E—F gives rise to a vector bundle & over Rx R,
and a vector bundle morphism L: & —F is defined by L(4,v)=L,v for
(4, v)eé.

It is easy to prove that for any (o, §, v)eP x E and teS!, we have Uy g€
[C(R; L*(Q2; R))]™ and the mapping (¢, f)eS* x (0, 0) > v, ;e[C(R; L*(2; R))]™

1
is continuous. Therefore by the assumption (FZ) on f, E S 5 0)(-)e
1
L*(Q; R™) is well defined and the mapping teS* ﬁﬁf(u,,ﬁ, a)(-)el*(2; R™)

defines an element F,,, in C(S'; L*(Q; R™). Let i denote the natural
imbedding C(S'; L*(2; R™) c L*(S! x ; R™), we can now define a mapping
F:RxR, xE->L*S'xQ; R")=F as follows

A — 1
Flo, p, v)(t, X) = io Fop,(6)(x) = Ef(vt,ﬂ, ) ().

The continuity of f as a mapping from [C(R; L*(2, R))]" x R to L*(Q; R™)
and the continuity of the imbedding i imply that F is continuous.
Let us notice that we have the following natural imbedding

ji€& > Rx R, x H"2(S! x Q; R™).
On the other hand, it is well known that the composition of the following
imbeddings
2
HY2(S'x Q; R™) =, H3°(S' x 2; R") =, C(S'; L*(@; R™)
is compact. Therefore the natural injective morphism of vector bundles

J:6 — RxR, xE
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satisfies that J,: E,l—+17] is a compact operator for each AeRx R,. This
shows that the mapping F:& — F defined by F =FoJ is completely
continuous.

Proposition 4.1. Finding a periodic solution ve H"*(S* x Q; R™) of the

system (4.3) is equivalent to solving the following parametrized coincidence
problem

4.4 L.pv = Flo, B, 0), (o, )eR x R ..

Let us point out that all of the spaces introduced above, i.e. E, F, E and
H%2(S' x Q; R™) are Banach isometric representations of G =S' which act
on functions by shifting the ¢t-argument. Since linear operator L, ;5 and the
nonlinear perturbation F are equivariant with respect to this group action,
the coincidence problem (4.4) is exactly a parametrized coincidence problem
of the type studied in the previous sections.

To continue our discussion, we further assume the nonlinearity f: [C(R;
L2(2; R)I™ x R — L*(Q; R™) satisfies the following assumption:

(H.1) t_here exists a number s > O such that the map f has a C*-factorization
[ [C((— o0, 51; L2HQ; R)T™ x R — L*(Q; R™), i.e. we have the following
commutative diagram

[C(R; L*(Q; R)I" x R AN [2(Q; R™)

r : f
[C((— oo, s]; L2(Q; R)]T" x R

where r denotes the “restriction of domain” operator.

The above assumption means simply that we admit functionals with both
unbounded delayed argument and bounded advanced argument.

Let upe L*(2; R™ < L*(Q; C™ be a t-constant function. Since (u,), = u,
for all teR, u, is a solution of (4.1) with o = o if uye X, = {we H*(Q; C™);
B(ag, x)o = 0} and the following equation is satisfied '

{P(ao, X, D)ug = f(ug, %0)(x)  In £,
B(ag, X)ug =0 on 0€Q.

We will call (4, o) a stationary solution of (4.1) with a = o,.

Assume that (ug, «,) is a stationary solution of (4.1) with « =0, We
put  L(cg):= P(0tg, X, D) — D, f (g, 0o): X4 = L*(Q; C™) - L2(2; C™), where
D, f (uy, ay) denotes the complexification of the restriction of the derivative of
f with respect to u to the space X,,. We say that the stationary point (u, %)
is nonsingular if 0¢ o(L(0)), where o(L(x,)) denotes the spectrum of L(a).
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Let (uy, @p) be a stationary solution of (4.1). We define the mapping
Ft Ci=C((— oo, s]; L*(Q; C™) > L*(Q; C™) by the formula

9eCr— F,(9):= D, f (ug, %) e L}(Q; C™),

where D, f(uy, o;) denotes simply the complexification of the derivative of f
with respect to u. If (ug, ®y) is a nonsingular stationary point, i.e.,
L(xg): X,, — L*(2; C™) is an isomorphism from X,, (equipped with the graph
norm) to L*(Q; C™), then by the implicit function theorem, there is a
continuously differentiable function u(x) for o near oo such that (u(x), o) is a
stationary point for each o« To simplify the notation, we put

Z.9):=D,fu(), ®)p, @eC.

4.3. Linearization and characteristic equations. The spectrum analysis of the
linearization of the system (4.2) at a stationary solution (u, &) leads to the
following characteristic equation

4.5) A (Aw:= Aw + P(a, x, D)w — F,(e*' w) = 0,

where we X,:= {we H*(Q; C™); B(o, x)w = 0}, «eR. As the linear operator
w— Z,(e*'w) is well defined and bounded only for 2eC with Re A >0, the
above equation has meaning only for those complex numbers.

Let us notice that 4,(4) is an unbounded operator in the space L*(Q2; C™)
such that Dom (4,(4)) = X,. Since P(a, x, D): X, < L*(Q; C™) - L2(Q; C™) is
an elliptic self-adjoint operator, 4,(4) is a closed Fredholm operator of index
Zero.

Let S: L*(2; C™) — L*(2; C™) be defined by

Sw = irw, wel?(Q; C™),

where r > 0 is any given constant. Since P(a, x, D) is self-adjoint, the inverse
R,,:=[P(a, x, D)+8]71: L}(Q; C"—L*(Q; C™) exists for all acR. Moreover,
since the inclusion H*(2; C™) 5 L*(2; C™) is a compact operator, the operator
ﬁa,, is compact.

Now, the equation (4.5) can be rewritten as follows

(4.6) A, (w:=w — ("R, (W) + (1 — inR, ,(w) = 0.

It is clear that Za,,(/l) is an analytic function of 4 for Re A > 0. Moreover,
4,,(4) is a bounded operator of the type “identity + compact operator”, thus
it is a bounded Fredholm operator of index zero.

Definition 4.1: 1 is a characteristic value of (4.5) if, Ker 4, ,(4) # {0} (or
equivalently, Ker 4, ,(1) # {0}). The multiplicity of a characteristic value A,
denoted by m(4), is the dimension of the generalized kernel of Za,,(/l), ie.,
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m(4) = dim (i, Ker [4,,()]".

As an immediate consequence of the above definition, m(4) < co for all
characteristic values 4 such that Re A > 0. Moreover, if Re A > 0, then 4 is
an isolated characteristic value.

Definition 4.2: A nonsingular stationary solution (ug, oy) of (4.1) is a
center if the linearization of (4.1) at (uq, o)

L(og):= P(ag, X, D) — D, f{ug, o)

has purely imaginary eigenvalues. We will call (uq, oy) an isolated center if
it is the only center in some neighbourhood of (u,, @) in L?(2; R™) x R.

We denote by o, = R the spectrum of the self-adjoint operator P(x, x, D):
X,cL*(Q; C")—L*(Q; C™. Since P(a, x, D) is an elliptic differential operator,
the spectrum o, is discrete and all eigenvalues uf are of finite multiplicity such
that

Mo < pI << pj<...
We denote by Ej the generalized eigensubspace of P(a, x, D) corresponding
to uleo,, and let p§: L*(Q; C")— L*(Q; C™) be the orthogonal projection
onto E?!. Consequently, for every weL*(Q2; C™) we have w= ) piw).
j=0

Substituting w = Y p%(w) into (4.6), we obtain
ji=0

Ms

4.7)

1 ) A—ir
[pjf(W) — = F e W) + —— p;‘(W)] =0.
0 u; + u; +ir

J

We denote by F¥ the subspace of C. spanned by functions of the type

t = o(t)w, where o e C((— oo, s]; C) and we Ef. The following hypothesis (see,

cf. [35] for explanation) will be needed for the presentation of our Hopf
bifurcation theory.

(H.2) #,(F% < E for all stationary solutions (4, «) and j =0, 1, 2,.... Under
the above hypothesis, (4.7) becomes the sequence of equations
. L A—ir .
(4.8) piW) = F( i) + = pjn) =0, =0 L.
j J

4.4. Crossing number and its computation. Suppose that 1, is a characteristic
value of (4.5) for o = oy, 1.€e. Ker Zao,,(io) # {0}. Since the multiplicity m(4,)
is finite, there exists a number k such that for j > k the equations (4.8) for
A =24, and a'=a, have no nontrivial solution. Moreover, one can find a
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neighbourhood V of 1, in C such that for all A€V, with Re A > 0, the equations

(4.8) for j >k and « = a,, have no non-trivial solution. Consequently, we
k

can put E**:= @ EX and A% ,(1):= Ay, (1) |geo i E**— E** Then ieV

ao,r
i=0

with Re A >0 is a characteristic value of (4.6) for o =oa, if and only if
det 4% () = 0. .

Denote by p,,: L*(2; C™) - L*(2; C™) the orthogonal projection onto the
space E**. By using the spectral integral we can find an open neighbourhood
W of a, and a continuous mapping p: W— £ (L*(Q; C™) such that p,:= p(a)
is exactly the orthogonal projection on the eigensubspace E**® of the operator
P(a, x, D) corresponding to the part of the spectrum o, that is related to the
eigenvalues p%,...,u%. To achieve this we take a contour containing the
cigenvalues u%,...,ui° and the spectral integral over this area, for a close to
o (cf. [29] and [45]). Moreover, we can take the subset W< R sufficiently
small such that

Zu,r(i)hEd,k(a))L : (E“’k(“))l N (Ea,k(a))J_

is an isomorphism for AeV with Re 4 >0, and ae W.
In what follows, we put, for ae W,

A%, = Ay (D) e E2HO — E2*O,
For the local Hopf bifurcation, we assume the following:

(H.3) there exist a stationary solution (uy, ,)€ L*(2; R™) x R and B, > 0 such
that if, is an isolated characeristic value of (4.5) for @ = a,. Moreover,
there is ¢ > 0 such that for 0 < o — a,| < &, Ker 4, ,(if) = {0} for every
BeR, and Ker 4,,(0) = {0} for all xeR.

Under this assumption, by using the above construction with A, = if,,

we can find the intervals [ — d¢, o + 09] & W and a neighbourhood V= C

of A, such that the numbers

7+ (Uo, %, Bo):= deg (det Z::oié,r) Vi)

are well defined for every 6 >0 such that 0<§ < d,, where V,:=Vn{i;
Re A > 0} does not contain other zeros of det 4% . and deg denotes the usual

ag,r

Brouwer degree. We now introduce the number

Yo, %o, Bo) =7 -(Ugs %y, Bo) — 7+ (o, %05 Bo)

which will be called the crossing number of (g, ify, ug). The crossing number
9(ug, oo, Bo) counts the number of characteristic values (with multiplicity) that
enter the subset V, when « crosses the value o,.

To compute such a crossing number, we recall a result due to [12].
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Suppose ay, a,, b, ¢y, c,€R, a; <a,, b>0,¢; <c,. Let @ =(—b, b)x
(cy, ¢;) € R?, and let @: [ay, a,] x Z — R? be a continuous mapping. For
every aecla,, a,], we put

D, (u, v) = D(o, u, v), (u, v)eD.
We assume

(C.1) D(a, u,v)#0 for all ae[ay, a,] and (u, v)edD;
(C2) if (u,v)eP, a=a; (j=1,2) and ®(a;, u, v) =0, then u # 0.

Set 9, =(0,b) x(cy, ;). Define &%, d~: 9, >R* by & :=d,|,,,
® =, |y.. The conditions (C.1) and (C.2) imply that @*, &_ have no
zero on 09,. Consequently, we can define the integers y, :=deg(®*, 2.)
and the crossing number y for the family {®,},c1, 4 bY

VEY- T Ve
The following result provides a computation formula for y.

Lemma 4.1. Suppose that @: [a,, a,] x Z — R? is continuous and satisfies
the conditions (C.1) and (C2). We put 9,:=(a,, a,)x(c;, c,) and define
Y: 9, > R* by Y(o,v)= D 0,v) for aelay, a,] and veley, c,]. Then
(o, v) #0 for (o, v)€0D, and

Y= deg (w» 91)
The proof can be found in [12].

4.5, Statement of main results. We are now in the position to state our
local and global Hopf bifurcation theorems.

Theorem 4.1. Under the assumptions (H.1), (H.2) and (H.3), if y(uo, %9, Bo)
# 0, then the point (xy, fo. tg) is a bifurction point of the parametrized
coincidence problem (4.4), i.e. there exists a sequence {(ot,, B,, u,(t, x))}:2 such
that o, — oy, B, — Po, u, > uy as n— oo and u,(-, x) is a nonconstant periodic

solution of the system (4.2) for a = o, with a period 2—n

Remark 4.1: One can ecasily verify that the reaction-diffusion equations
with delay considered in the literature [33], [35], [37], [50] and [51] satisfy
conditioris (FZ) and (H.l1). (H.3) is a standard assumption in the Hopf
bifurcation theory and is satisfied under the “transversality condition” (see, cf.
[17, 33, 50, 51]). (H.2) is required mainly for the sake of simplicity. This
assumption is motivated by the work of Memory [33], [34], [35] and is
satisfied by the reaction-diffusion logistic equation with delay (see, cf. [35]).

For the global bifurcation problem, we make the following assumption:
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(H.4) All stationary solutions of (4.1) are nonsingular and all centers of (4.1)
are isolated.

Under this assumption, zero is a regular value of the restriction
Go:=(L— F)|gc: & > FC. Consequently, M:= G, '(0) is a 2-dimensional
submanifold of € < R x R x E¢. Tt is easy to see that M satisfies conditions
(A) and (B).

Let S denote the closure of the set of all nontrivial t-periodic solutions
of (4.1) in the space R x R, x H"2(S* x Q; R™), and let C(uy, oy, f,) denote
the connected component of a bifurcation point (xg, fo, Ug)€S. We are now
in the position to state the following global Hopf bifurcation theorem:

Theorem 4.2.  Under the assumptions (H.1), (H.2) and (H.4), if (¢, Bo» to)
€M is a bifurcation point of (4.4), then the connected component C(ay, Bo, o)
of (g, Bo, ug) in S is either unbounded or the number of bifurcation points in
Clog, o, Uy) is finite, i.e.,

Clogs fo, u) N M = {(0‘0’ Bo, o), (21, B1, u1),--~,(05q, 9 Uq)}-

In the later case, we have the following equality:
(o, %o, Bo) + (g, oy, By) + -+ + y(uy, o, B) = 0.
O

We emphasize that Theorem 4.1 can be extended to a more general
version of a local bifurcation theorem. In fact, if all stationary solutions of
(4.1) are nonsingular, then we have again a well defined 2-dimensional
submanifold M = G, '(0) which satisfies the assumptions (A) and (B). We
denote by 4 = M the set of all centers.

Let U, be an open bounded subset of M whose closure is contained in
a local neighbourhood of the type described in the condition (B), ie.
U, < {(4 n(4); 2eU,;,} =« M, and such that oUynA =@, I''=U,n4 #0,
where U, =(a_, ay)x (by, by), o <oy, 0<b; <bh,. Let d>0, we denote
by #, the parallelopiped

Pyi={(,1,f) o <a<a,,0<t<d b <B<b,}.
Now we can make the following hypothesis.

(H.3) Ker 4,,(0) = {0} for all & = («_, ), and for every (a, 7, )€ 2,
if Ker ZM’,(T +if) # {0} then either 1=0 and (% f)eU,, or
OCE{O(_, O€+} and (Ta ﬂ)E(O, d) X (b1> bZ)

The above assumption means that a characteristic value 4, for a_ <o <a,
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can “escape” from the set (0, d) x (b, b,) only through the side {0} x (b,, b,)
lying on the imaginary axis. Clearly, the assumption (H.3) is a special case
of (H.3).

Now, we denote by X the set of all pairs (o, 4,), where 4, is a characteristic
value in [0, d] x [b;, b,] for a_ <a <a.,, ie.

Y= {(o 1, peP,: Ker 4, ,(t + i) # {0} }.

The set ¥ is compact. Therefore from the subspaces E**@ defined in previous
subsections we can construct a finite dimensional subspace E*, depending on
acla_, a,], such that the operator

A%,(2):= 4, ,(A)|p: E* —> E*
is well defined and
Ker 4%,(2) = Ker 4, ,(4).
Now, we can put V, = (0, d) x (b, b,) and we define again
v+ ([, ay) = deg(det Zfi,n Vi)
and

’J)(F, %, O(+)Z= '))_(F, Ot_) - ’})+(F, OC+).

The number y(I, a_, o) will be called the crossing number of the set I' with
respect to o_ and «,. This crossing number expresses the difference of the
number of characteristic values (with multiplicity) in the set V, for a =a_
and o =o,.

‘"Theorem 4.3. Under the assumptions (H.1), (H.2) and (H.3), if y(I, oo, o)
# 0, then the set I contains a bifurcation point of the parametrized coincidence

problem (4.4), i.e. there exists a sequence {(a,, B, u,(t, )}, such that
(0> B> ty) = (2o, Bo» o) as n— o0 for some (ty, Bo, Ug)€L, and u,(-,X) is a

27
nonconstant periodic solution of the system (4.2} for a = a, with a period —.
n

Finally, we should point out that the relationship between the crossing
number and the center index introduced by Mallet-Paret and Yorke [39] as
well as the Hopf index defined by Fiedler [17] was discussed in [12] for
(ordinary) functional differential equations. It can be shown that such a
relationship still holds for the parabolic partial differential equations discussed
in this section . For details, we refer to [12].
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4.6. Proof of main results.

Proof of Theorem 4.1: We begin the proof with some remarks concerning
the operators L, ;z: Dom (L ) S L*(S* x Q; R™) - L*(S* x Q; R™). Let us
recall that we denote by o, = {u§, u5,...} the spectrum of the self-adjoint
operator P(x, x, D): X, = L*(Q2; C™)— L*(2; C™), where p < i < <pi<....
By applying the separation of variable to the operator L ; we obtain that
the spectrum o(L, ) of the operator L 4 is the set {f7'u} £ ik; j, ke N},
where N= {0, 1,...}.

We put F:= L?(S* x Q2; R™). The space F is an orthogonal representation
of G:= S acting on functions u(z, x) by shifting the t-argument, i.e. for ye S*,

(y-u)(z, x) =u(y-z x), where zeS!, xeQ.
The space F has the following direct sum decomposition
F=F,®F, ®--®F.&®...

where F, = #, ® L*(Q; R™), %, = span {cos kt, sin kt} = L*(S'; R). Tt is easy
to prove that F, is an isotypical summand for the action of G such that for
every xeF,\{0} and k >0, G, = Z,. Moreover

0(Lgplr) = (87" 1§ £ ik; je N}

This means that the restriction of L, to the subspace F, is a bijective
operator from Dom (L z)nF, onto F,. We also recall that the subspace
F., k>0, has the natural complex structure induced by the S! action on
F,. By using such a structure, we can represent any function ueF, by
u(t, x) = exp (ikt)o(x), where @ e L*(2; R™).

We consider a sufficiently small neighbourhood ¥~ of (ag, f,) in P (we
will specify it more precisely later). Since Ker L, 5, < E® =F, and Coker L, )
< EY = F,, there exists an equivariant resolvent K of L over ¥". Moreover,

we can assume that for any (o« fe?”, Ker K, ;2 @ F, and Im K, ;) = F,.
i=1

Consequently, for all (¢, fye?", R, plp,: Fr = F, is simply {L, plr} "
We are now in the position to find the exact formula for the linear
equivariant operator T} ,: F, — F, given by

T(:,p)u =u— D,F(a, B, up)° R(a,ﬂ)(u) — Kypyo R(a,[i)(u)
=u—D,F(a, B, uo)o [Lyp] 'u, uekF,.
By the definition,

1
D,F(e, B, uo)w = — F,(w_j).

=



Hopf Bifurcation and Parabolic Equations with Delays 443
Therefore
Tk _ 1 1272 L -1
@pU =U— E/a(([ @pl W, p)-

We define 2, := (g — 3, ag + ) X (Bo — ¢, o + ¢), where 6 > 0 and ¢ > 0 are
such that Q, =¥ . Evidently, there is a homeomorphism &:S*—0Q,
(preserving the orientation) which we are going to consider as an identification
of S with 0Q,. We now define :

W, 02, — GLE(F)), k=1,2,...
by
Yo, B) = T(f;,pﬂ F.—-F,, (0, pe0f,.

Let e,: L*(2; C™)—F, be defined by e (w, +iw,)=cos (k-)w, +isin (k-)w,,
where w,, w,eL?(Q; R™). Then, ¢, is evidently an isomorphism which
preserves the complex structure. Moreover, we have the following commu-
tative diagram:

F,nDom (L, ;) —=2 11,{
Iek ek_ t

Dom (P(a, x, D)) ~=8 [2(Q; C™)
1 1
where P{, pu = iku + EP(oc, x, Dyu = E[ikﬁu + P(a, x, D)u]. Therefore

e ! [L(a,ﬁ)] -t € = ﬁﬁa,kﬂ'
Consequently, we have

Tk e ,- 17k
Tapwi=e Tgple-w)

1 _ _
=Ww—-—€& 1%(([14@:,/3)] 1ekw).,ﬁ)

B

Lz R
=w— ﬁek F (PR, 1pW). . p)
=w — ey L™ F (e R, 15(W))
= w — F (€™ R, 15(W)).

Therefore, we prove that

Dile, Byi= Tk 5y L2(Q; C™) — L2(Q; C™)
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is given by
T pyw =w — Fo(e™ R, 15(W) = 4, 1 (ikP).

Now we can specify what we meant by the sufficiently small neighbour-
hood ¥~ of (ag, By). Namely, we assume that for («, f)e¥", there exists no
Ae{z;|Rez| < b, |Imz— fo| <c} such that the equation Z!a,ﬂ(),)w =0 has
non-zero solution we(E**®)*, where b= b(ay, fo) >0 and ¢ = c(og, fo) > 0
are sufficiently smalil numbers.

Note that ¥, ([¥,]) = 71([¥,]) = deg (. 2,) and §(«, f):= det 4%,(ip) is
evidently homotopic to (x, f):= det 4%, (if). Therefore, it follows from
Lemma 4.1 that

Villr11) = y(uo, 20, o) # 0.

Thus our conclusion is a consequence of Theorem 3.1. This completes the
proof. |

Theorem 4.2 is an immediate consequence of Theorem 3.2.
The proof of Theorem 4.3 is similar to the proof of Theorem 4.1.
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