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1. Introduction

In this first of a series of papers devoted to an equivariant degree theory with
applications to bifurcation problems with symmetries, we present a construction
of the equivariant degree.

Let V be a finite-dimensional orthogonal representation of a compact Lie group
G, and f: V XR"— V be an equivariant continuous mapping such that f(x)#0
for all x € 9Q, where Q is an invariant bounded subset of V X R™. The G-degree
of the mapping f with respect to Q which we are going to construct is a sequence
of integers indexed by orbit types (H) in Q satisfying dim W (H) = n, where N(H)
denotes the normalizer of H and W(H) = N(H)/H is the Weyl group of H.

One of our major technical tools in constructing the G-degree is the concept of
intersection number for a section of a smooth vector bundle p: E — M which is an
integer when E is orientable as a manifold. A slight (but crucial for our purpose)
advantage of the intersection number, defined in the present paper, over the
standard construction of the intersection numbers for mappings between smooth
manifolds, and the construction of the so-called Euler number of an orientable
vector bundle, is that in our definition M is not required to be orientable and E is
only required to be orientable as a manifold, not as a vector bundle. Nevertheless,
we should mention that our approach in defining such an intersection number is
parallel to that in [16, 17, 29].

We will construct the G-degree, G-Deg(f, ), by induction over orbit types in
Q. In the case where Q has only one orbit type (H), the construction of
G-Deg(f, Q) can be briefly sketched as follows. Let V,={xeV: G,=H},
VH#={x eV: H=G,} and denote by f,: V, XR"— V" the restriction of f to
Vi, X R". We first observe that W(H) acts freely on V,; X R" and V; X R" X V¥,
and that the W(H)-equivariant projection m: V,; X R" X V¥ >V, X R" induces
a smooth vector bundle p: E—»M with a typical fibre V" where E =
(Vu XR"XVH)/W(H) and M =(V, XR")/W(H). Next, we use the W(H)-
equivariant mapping x € V; X R"— (x, fy(x)) € Vi X R" X V" to induce a section
Sgm: M — E and define the (H)-component of G-Deg(f, Q) as the intersection
number of s;,. Then we show that this definition is independent of the choice of
H, and the G-Deg(f, Q) so-defined has all the properties of a topological degree.
Finally, we prove that if W(H) is bi-orientable (that is, W(H) has an orientation
invariant under left and right translations) then E is orientable as a manifold, and
hence the (H)-component of G-Deg(f, Q) is an integer. In the case where Q
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has several orbit types, we choose a minimal orbit type a = (H) in €, an open
invariant subset Q, € Q, and an equivariant map f,: V @R"” — V such that

QSQ\(V,®RY), f'(0)NQs(V,&RHUQ,,
fi=f on(V,®RHUQ,,

and f, satisfies a certain ‘a-normality’ condition. Since Q,, has only one orbit type
and Q, has fewer orbit types than Q, we can define

G-Deg(f, ) := N(H)-Deg(fu, Qu) + G-Deg(fo, )

by induction. It then remains to show that the above definition is independent of
the choice of H, f;, and Q, and that the G-Deg(f, Q) has all the standard
properties of a topological degree.

To illustrate the essence of our construction, we briefly recall an elementary
approach to introducing the classical Brouwer degree in the non-equivariant case.
Suppose that U =R™ is open and bounded, and g: U— R™ is continuous with
g '(0)N U =. Then g can be approximated by a generic mapping g (that is, a
C'-mapping for which 0 is a regular value) and deg(g, U) is the ‘algebraic’ sum of
the points in g7'(0) which is independent of the approximation §. Our
construction of equivariant degrees is similar, but the generic approximation is
much more complicated. Namely, to define the (H)-component of the G-degree
for f with respect to €, one has to approximate the mapping f by an ‘a-generic’
mapping f which satisfies certain normality conditions and whose restriction fj, to
Q,, is transversal to zero. This generic approximation f;; can have only a finite
number of non-degenerated orbits of zeros in €. In the case where W(H) is
bi-orientable, these orbits are naturally oriented by W(H). So to each of these
orbits, we can assign a number +1 or —1, depending on whether f;, preserves or
reverses the orientations of the normal space to the orbit and V. The sum of
these numbers +1 turns out to be exactly the (H)-component of the G-Deg(f, Q).
So the (H)-component of G-Deg(f, Q) counts the orbits of zeros of f with the
orbit type (H), and consequently G-Deg(f, Q) provides a topological invariant
which can be used to determine the existence of zeros and to estimate the number
of orbits of zeros as well as their orbit types.

Equivariant degrees have been the subject of much literature of which we
mention [3-5, 7-9, 11-15, 18-22, 24-28, 30]. In particular, a much more general
G-equivariant degree was introduced by Ize, Massabd and Vignoli in [19] where
they defined the equivariant degree, in the language of equivariant obstruction
theory, as an element of a certain equivariant homotopy group of spheres
75(5"**%). Our construction expresses the fact that there is a direct factor @, Z
contained in 7$(S"**), where a = (H) varies over orbit types with bi-orientable
Weyl group W(H). This fact was also proved independently in [26] by a different
approach based on methods of algebraic topology. While our equivariant degree
is less general than that in [19], our elementary construction provides a simple
method to compute the degree, as a sequence of integers. We should also
mention the recent paper of Prieto and Ulrich (cf. [27]) in which the authors
generalized Dold’s transfer for parametrized equivariant coincidence problems
and extended the notion of the equivariant fixed point index to the class of
G-ENRs over a base space.

This paper is composed as follows. In §2, we first modify a well-known
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transversality theorem for vector bundle sections, and then use the transversality
technique to define an intersection number for a section s of a smooth vector
bundle p: E— M with respect to an open relatively compact subset U =M. The
terminology of intersection numbers is borrowed from the book of M. Hirsch [17]
and can be regarded as the intersection number between the zero section of the
bundle E (which is diffeomorphic to M) and the ‘graph’ of s over M. The
manifold M is not required to be orientable. However, if E is orientable as a
manifold then the intersection number x(s, U) is an integer with the standard
properties of a topological degree. Section 3 is entirely devoted to the
construction of the G-degree and the main result of the paper is presented in
subsection 3.A. Our construction of the degree is conducted by induction over
orbit types in Q. In subsection 3.B, we start the induction by considering the case
of a region Q with only one orbit type (H). For such a region an equivariant
mapping determines a section of a certain quotient vector bundle and the
intersection number of this section is the (H)-component of the G-degree. In
subsection 3.C, we complete the induction for the general case and present a
verification of the properties of the G-degree. In § 4, we establish a reduction
formula and a regular-value formula for the constructed equivariant degree.

In subsequent papers, we will discuss the application of the equivariant degree
to the (local, global) Hopf bifurcation problems of dynamical systems with
symmetries and bifurcation problems of time-reversible dynamical systems.

Acknowledgements. We would like to thank Professor Jorge Ize for pointing
out some imprecise details in our original manuscript and we are also very
grateful for his comments and suggestions. We also thank Georg Peschke for
stimulating conversations and remarks. In addition we wish to thank Professor
Lynn Erbe for his support and Huaxing Xia for careful reading of the manuscript.
We would like also to express our appreciation to the referee and to the editor for
their comments and suggestions.

2. Intersection numbers of bundle sections
We start this section by recalling a well-known transversality theorem for

mappings between smooth manifolds.

DeriniTion 2.1, Suppose that N, and N, are smooth manifolds, f: Ny;— N, a
C'-map, A S N, a submanifold, and K N, a subset. We say that f is transversal
to A along K if

Tf(.\’)NZ = Tf(x)A + T‘,f(an), forx € K ﬂf_l(A)
In what follows, we will denote by f rhKA the fact that f is transversal to A
along K. Moreover, for every r =1, we define
NNy, Ny A) = {f & C'(Ny, No: frhic A}
The following transversality theorem for mappings between manifolds is a

well-known fact. For details, we refer to [17].

THEOREM 2.2. Let N, N, be two smooth manifolds, A< N, a closed smooth
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submanifold and K = N, a compact subset. Then for each r =1, rh;(N,, N, A) is
dense in C(N,, N,), and open and dense in C’(N,, N,) equipped with the
compact-open topology.

Suppose that p: E— M is a smooth vector bundle equipped with a Riemannian
metric (-, ), for x € M. The norm induced by (-, -), will be denoted by |-||,, or
simply [i-]]. A continuous map s: M — E is called a section of E if p(s(x)) = x for
every x € M. The set of all sections of E will be denoted by I'(E), and for every
r=1 we define

I"(E)={s e T(E): s e C"(M, E)}.

A section s e I"(E) is called a C"-section. The zero section of p: E— M is the
section z: M — E such that, for every x € M, z(x) is the zero element of the fibre
E.:=p~'(x). In what follows, we will often identify M with z(M) via z, and for a
given section s € I'(E), we will use s(x) =0, for x € M, to denote s(x) = z(x).

Let I'i(K, E):=T(E)N rh;(M, E ;z(M)) for every given subset K< M and
r=1. The following theorem can be regarded as a version of the transversality
theorem for bundle sections.

THEOREM 2.3. Let p: E—>M be a smooth vector bundle, K= M a compact
subset, and r = 1. Then I'(K, E) is dense in I'(E), and open and dense in I'"(E)
equipped with the compact-open topology.

Proof. Notice that if K =, K|, then
'K, E) = Q (K, E).

Therefore, it suffices to prove the theorem in the case where K< U and U is a
local chart for the bundle p: E— M. The inclusion i: U< M induces the
following commutative diagram:

I"(E) ———— TI"(E|y)=C(U,F)

I |

T4(K, E) —— T(K, E|v) = N(U, F ;{0})

where F denotes the standard fibre of E. Thus, by Theorem 2.2, I'}y(K, E) is open
in I'"(E). The density of I'}(K, E) can be verified by using a cut-off function for
the pair K € U and, again, by using Theorem 2.2.

Throughout the remaining part of this section, we assume that p: E—> M is a
smooth n-dimensional vector bundle over a smooth n-dimensional manifold M,
and Q= M is an open subset with compact closure.

DerINITION 2.4. We say that s e ['(E) is an Q-admissible section if s(x) # 0 for
every x € 9Q2

DEeFINITION 2.5. A continuous map h: M X [0, 1]— E is called a homotopy in
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['(E) if h, e [(E) for every t € [0, 1], where h,(x) = h(x, t) for (x,t) e M X [0, 1].
A homotopy h: M X [0, 1]— E is said to be Q-admissible, if h, is Q-admissible for
every t € [0, 1].

The goal in the next subsection is to assign to every -admissible section
s: M — E a topological invariant which is an integer when E is orientable as a
manifold.

2.A. The case where E is orientable

In this subsection, we assume that E is orientable. Identifying M with z(M) via
the zero section z: M — E, we obtain the following exact sequence of vector
bundles over M:

TM — TE|y— E,

where the first map is induced by the inclusion and the second is the quotient
map.

DEeFINITION 2.6. Let s: M — E be a C'-section. We say that x e M is a regular
zero of s if s(x) =0 and D,s(x): T.M — E,, defined by the composition

ML TE—E,
is an isomorphism of vector spaces.

We now consider a section s € I'4(Q, E). Clearly, the set s™'(M)NQ is finite
and composed of regular zeros of s only. Since E is oriented, for every given
x e s~'(M)NQ a chosen orientation of T,M determines an orientation of E, so
that the identification Ty, ,E = T,M @ E, preserves the orientations. Define

{+1 if D,s(x) preserves the orientations,

n(s, x) = . . .

—1 if D,s(x) reverses the orientations.

It is easy to verify that the above definition of n(s, x) does not depend on the
choice of the orientation of T, M. This justifies the following definition.

DeriniTioN 2.7. Let s e TH(Q, E) be an Q-admissible section. The intersection
number of s with respect to Q is defined by

2(s, Q) = z n(s, x).

xes~W(MNQ

Lemma 2.8. Suppose that h: M X[0,1]— E is an Q-admissible homotopy in
T(E) such that ho, h, € TH(Q, E). Then y(ho, Q) = x(h,, Q).

Proof. Without loss of generality, we may assume that M is connected. If M is
orientable, then the conclusion of the lemma is a well-known fact (see [17]). We
will now prove the lemma in the case where M is non-orientable, by using
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arguments similar to those in [16}]. Let g: My— M be the orientable double cover
of M and p,. E,— M, the induced vector bundle. Then we have the following
commutative diagram:

E, — E

p 01 jp

M()T)M

Set Q,=¢ '(Q). An_admissible section s: Q— E determines uniquely an
admissible section s, Q,— E, such that

s(q(x)) = q*(so(x)).
Moreover, if s € Ti(Q, E), then s, € Th(Qy, E) and
x(So, Qo) =2x(s, Q).

Similarly, an Q-admissible homotopy determines an €;-admissible homotopy.
Consequently, the non-orientable case follows from the orientable case.

With Lemma 2.8, we are now able to extend the intersection number to every
Q-admissible section.

DerFiNiTION  2.9. Suppose that s e I'(E) is an Q-admissible section. The
intersection number of s is defined by

x(s, Q)= x(5, Q),

where § e I'3(Q, E) is an Q-admissible section such that

sup [Is(x) = S(x)[lc < inf [is(x)]ls.
xeQ reaQ

Remark 2.10. The existence of 5 is guaranteed by Theorem 2.3. The fact that
the definition y(s, Q) is independent of the choice of s can easily be verified by
using Lemma 2.8. This justifies the above definition.

From the above construction, we can employ standard arguments in the
topological degree theory (see [23]) to obtain the following fundamental
properties of intersection numbers.

THEOREM 2.11. The intersection number of bundle sections has the following
properties.

(1) (Existence) Ifs e I'(E) is an Q-admissible section and y(s, Q) # 0, then there
exists x € Q such that s(x) = 0.

(i1) (Excision) If Q,<Q is an open subset and s e T'(E) is an Q-admissible
section such that s(x) #0 for x € Q\Q,, then (s, Q)= x(s, Q)).

(i) (Additivity) If Q,, , are two disjoint open subsets of Q and s € I'(E) is an
Q-admissible section such that s(x)#0 for x € Q\(Q, U Q,), then

205, Q) = x(s, ) + x(s, ).
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(iv) (Homotopy Invariance) If h: M X [0, 1]— E is an Q-admissible homotopy,
then x(h,, Q) is a constant independent of t € [0, 1].

(v) (Product Property) Assume that V is a finite-dimensional linear space and
U<SV is an open subset containing 0. For s e T'(E), let 0: M X U—E XV XV
denote the section of the product bundle E XV XV — M XV defined by a(v, x) =
(s(v), x,x). If s is an Q-admissible section, then o is QX AU-admissible and
x(o, QX U) = x(s, Q).

Note that the sign of y(s, Q) depends on the choice of orientation of E. Note
also that in (v) we choose an orientation of V and then orient V X V by using the
product orientation.

2.B. The case where E is non-orientable
We now consider the case where E is not orientable.

DEeFiNITION 2.12. Suppose that s € I'(E) is an Q-admissible section. The modulo
2 intersection number of s with respect to Q is an element of the group Z, = {0, 1}
defined by

X2(s, Q) =n(E"'(M)NQ) (mod2),
where § e I'3(Q, E) is chosen so that

sup [Is(x) = 5(x)ll < inf [Is(x)ll,,
reQ X a2

and n(5 ~'(M) N Q) denotes the number of elements in the set § ~'(M) N Q.

ReMARK 2.13. Clearly, the set § ~'(M) N Q is finite. Using an argument similar
to that for Lemma 2.8, one can show that y(s, ) is independent of the choice of
5eTH(Q, E). Therefore, x,(s, Q) is well defined. Moreover, we can easily
verify that the fundamental properties in Theorem 2.11 are still true for
x2(s, Q) (mod 2).

3. Equivariant degree theory

3.A. Main results

Suppose that G is a fixed compact Lie group. We say that two closed subgroups
H and K are conjugate in G, denoted by H ~ K, if there exists g € G such that
H =gKg™'. The relation H ~ K is an equivalence relation. The equivalence class
of H is called a conjugacy class of H in G and will be denoted by (H).

Let O(G) stand for the set of all conjugacy classes of closed subgroups of G.
The set O(G) is partially ordered under the following order relation:

a < B for a, B € O(G) if and only if there exist closed subgroups H and K of G
such that & = (H), B = (K), and K is conjugate to a subgroup of H.

For a closed subgroup H of G, we use N(H) to denote the normalizer of H in
G, and W(H) to denote the Weyl group N(H)/H of H in G. For every n e N, we
put

0,(G):={(H) € O(G): dim W(H) = n}.
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The following terminology is borrowed from [26].

DeriniTioN 3.1. A compact Lie group is said to be bi-orientable if it has an
orientation which is invariant under all left and right translations.

It is clear from the definition that every connected or abelian compact Lie
group is bi-orientable. A finite group is also (trivially) bi-orientable. It is not too
difficult to check that the group O(2) is not bi-orientable.

We will use the following notation:

OA,(G):={(H) € 0,(G): W(H) is bi-orientable};
OB,(G):={(H) € 0,(G): W(H) isnot bi-orientable};
A, [G]=B{Z: (H) e OA,(G)};
B.[G]=®D{Z,: (H) € 0B,(G)};
AB,[G] = A,[G]® B,[G]

An element of AB,[G] will be written as y =2, v, * « where

{Z if a € OA,(G),
Y« €1z, ifac0B,(G)

Assume that V is a real finite-dimensional orthogonal representation of the Lie
group G. We consider the product space V ©R", where we assume that G acts
trivially on the second component.

For a given x e V@ R", we denote by G, :={g € G: gx = x} the isotropy group
of x. The conjugacy class (G,) will be called the orbit type of x. For an invariant
subset X = V@®R", a closed subgroup H of G, and a conjugacy class a € O(G),
we put

X":={xeX: hx=xforallh e H};

Xy ={xeX: G,=H}
X :=xeX: (G)<a}
X,:=lxeX: (G)=a}

DeriniTion 3.2, For an open bounded invariant subset Q of V@R”", an
equivariant continuous map f: V@®R"— V is said to be Q-admissible if f(x)# 0
for x € 9Q. An equivariant continuous map h: V@ R" X [0, 1]— V, where G acts
on [0, 1] trivially, is called an equivariant homotopy. An equivariant homotopy
h: VBR"X[0,1]-> V is said to be Q-admissible if h,, defined by h,(x) = h(x, t)
for (x,1) e VOR" x[0,1], is Q-admissible for every re[0,1]. For an Q-
admissible homotopy h: V@®R" X [0,1]—V, we say that h, and h, are Q-
homotopic.

Our major result in this section can be formulated as follows.

THEOREM 3.3. For every Q-admissible map f: V®R"—V we can assign an
element G-Deg(f, Q) € AB,[G] such that the following properties are satisfied.

(P1) (Existence) If G-Deg(f, Q) =2, Yo ' a #0, that is, there is an a € O,(G)
such that y, #0, then there exists x € QN f~'(0) such that (G,) < a.
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(P2) (Homotopy Invariance) If h is an Q-admissible homotopy, then G-
Deg(h,, Q) does not depend on t € [0, 1].

(P3) (Excision) If Qy < Q is an open and invariant subset and f~'(0) N Q = Q,,
then G-Deg(f, Q) = G-Deg(f, ).
_ (P4) (Additvity) If Q, and Q, are two open invariant subsets of Q such that
Q] ﬁQz :‘@ andf—l(o)anQ] UQz, then

G-Deg(f, Q) = G-Deg(f, ;) + G-Deg(f, ).

(PS) (Product Formula) If U is another orthogonal representation of G, U is
an open invariant subset of U such that 0 € U, and g: VOR"XU—->V XU is
defined by g(x,y)=(f(x),y) for (x,y) e VOR" X U, then G-Deg(g, QX U)=
G-Deg(f, Q).

The element G-Deg(f, Q) € AB,[G] will be called the G-(equivariant) degree
of the map f with respect to the set Q. The construction of such a degree will be
conducted by induction on orbit types of Q in the following two subsections.

3.B. Construction of G-degree: one orbit type
We need the following technical lemma in order to construct the G-degree in
the case of one orbit type.

Lemma 3.4. Suppose that T is a bi-orientable compact Lie group, W is a real
finite-dimensional orthogonal representation of I, and U is an open invariant
subset of W such that

(1) T acts freely on U,

(ii) the action of T preserves the orientation of W; more precisely, for every
h €T, the map ¢, W— W, defined by ¢,(x) = hx for x € W, preserves the
orientation of W.

Then /T is orientable, and the orientation of U/I" is determined by the choice of
orientations of I and W.

Proof. We fix an orientation of T,I' and use the left translation L,: I'>T,
L,(h)=gh, for g, h € I', to choose an orientation of the space T,I" for any given
g €. Since T is bi-orientable, the right translation R,: T—=T, R,(h)=hg™',
where g, h e I, preserves these orientations.

Let y € 4. Since I' acts on % freely, the map &,: I' - I'y defined by Z,(h) = hy,
with h €T, is a diffeomorphism. This allows us to choose an orientation on I'y.
Note that if y* e ['y then there exists A* e I’ such that y* =h*"'y. Since R,.
preserves the orientation of T, it follows from the commutative diagram

"\

r —
7

that the orientation of I'y determined above does not depend on the choice of y*
in the orbit I'y.
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For y € U, let [y] denote the orbit I'y in 9/I. Choose an orientation of W.
Then T,% and T,(I'y) are oriented and determine an orientation of

T(%T) = T,/ T,(Ty) =S5,

where S, ={x e W: x —y L T,(I'y)} is the linear slice at y. Therefore /T is
orientable and a choice of orientations of W and I' determines the orientation
of U/T.

Throughout the rest of this subsection, we assume that G is a compact Lie
group, V is a real finite-dimensional orthogonal representation of G, Q is an open
bounded invariant subset of V € R”, and there exists a closed subgroup H of G
such that (G,) = (H) for all x € Q. That is, all points of Q are of the same orbit
type (H).

It can easily be shown that N(H) acts on V, XR" = (V®R"),, and conse-
quently induces a free action of W(H) on V,; X R". Similarly, we obtain a free
diagonal action of W(H) on the product space V, X R" X V. The projection
TV XR" X V7 -V, X R onto the space Vy X R” is clearly an equivariant map

NSl 2GA7] 10 g ahQu g tions and ] (D) it g M hps1aen ‘

smooth manifolds E:=(Vy XR"X V*)/W(H) and M:=(V, xR")/W(H). In
fact, p: E— M is a smooth vector bundle with a typical fibre V. Note that an
orientation of V* determines the product orientation of V" X V* which does not
depend on the orientation of V. Thus the product V¥ X V" has a natural
preferred orientation. This preferred orientation of V¥ X V* together with the
standard orientation of R” determine the orientation of V, X R" X V.

From Lemma 3.4, we have the following proposition.

ProrosiTion 3.5. If W(H) is bi-orientable, then the manifold
E=(VyxXR*"XV")/W(H)

is orientable. Moreover, the orientation of E is determined by the choice of the
orientation of W(H).

Assume now that W(H) is bi-orientable. Fix an orientation of W(H). If
H,~ H, that is, H,=gHg™' for some g € G, then the orientation of W(H,) is
uniquely determined by the natural isomorphism ¢,: W(H,)— W(H) defined by

to(hH\) =g 'hgH, forh e N(H,).

Indeed, if H, =gHg " for another element § € G, then we can easily show that
teo(tz)”" is an inner automorphism of W(H) and hence preserves the fixed
orientation of W(H). Therefore, we can choose an orientation for every class
(H) e OA,(G).

We now consider an Q-admissible map f: VOR"—- V. Since f is G-
equivariant, the restriction of f to the subspace V,, XR" induces a W(H)-
equivariant map f,: Vy XR"—> V7 f,(x) =f(x), for x € Vy X R". Clearly, f, is
Q,-admissible. Define Fyy: V, XR"— V,; X R" X V¥ by

Fuy(x) = (x, fu(x)), forx eV, XR"

Then F,, is a W(H)-equivariant section of the bundle m: VyXR"X V">
Vi X R Passing to orbit spaces, we obtain a section s;,: M — E of the vector
bundle p: E— M. This section is Qu/W(H)-admissible. Moreover, since the
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vector bundle is of dimension dim V* and dim W(H) = n, we have
dim M =dim(V"” X R") —n =dim V",

That is, the dimension of M is equal to the dimension of the fibre E. Therefore,
the intersection number of s, with respect to Q,/W(H) is well defined.

DeriniTioN 3.6. Fix an orientation for every class (H) € OA,(G). The G-
equivariant degree of f with respect to Q, denoted by G-Deg(f, Q)={v.}, is
defined by

x(spm QuIW(H))  if a = (H) and (H) € OA,(G),
Yo =\ X2(Sz1, Qu/W(H)) if @ = (H) and (H) € 0B,(G),
0 if a # (H).

To justify the above definition, we need the following proposition.

ProrosiTioN 3.7. The above definition does not depend on the choice of the
subgroup H representing the class (H).

Proof. Let H, be another representation of the class (H). Then there exists
ge G such that H,=gHg~'. The mappings 7, Vy XR" >V, XR" and
T Vi XR"X V=V, X R" X V" defined by

1

Te(x, v) = (gxg ™, v),
T(x, v, y)=(gxg~", v, gyg™"), for(x,v,y) e Vy XR"X V",
are equivariant (from W(H,)-space to W(H)-space) diffeomorphisms and provide
an equivariant isomorphism of the vector bundles V,;, X R" X v Vi, X R" and

Vi XR"X V"=V, XR" By passing to orbit spaces, we obtain the following
isomorphisms of vector bundles

Eyim (Vo X R VI W(HY 2

"l 51

M,:=(Vy XR")/WH) ——— M

Define the section s; ;. M,— E, of the vector bundle p,: E;— M, in the same
way as s;,; M — E is defined. Then we have the commutative diagram

o

M —=> M
(7]

from which, together with the definition of intersection numbers, it follows that
XS QuIW(H)) = 2(sp.1,, Qu,/ W (H,))

if (H) € OA,(G), and
X281y Qul W(H)) = 2a(s7.14,, Qur,/ W (H)))

if (H) e OB, (G). This completes the proof.
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ProrosiTioN 3.8. The G-equivariant degree of f with respect to Q satisfies the
properties (P1)-(PS5).

Proof. The properties (P1)-(P4) can easily be verified from the construction of
G-Deg(f, Q). Property (P5) is a direct consequence of Theorem 2.11(v).

We conclude this section with a regular value formula under the assumption
that Q has only one orbit type. A similar formula in more general cases will be
established in §4. Assume 0 is a regular value of f|o For x ef7'(0), let
Sc={y e V" y—x 1 T(W(H)x)} be the linear slice of W(H)-action at x. Set
D,f(x)=Df(x)|s;: S.— V". Since x is a regular point for f, D,f(x) is a linear
isomorphism. Choose an orientation of V¥. Orient S, in such a way that the
orientation of T,(W(H)x), followed by the orientation of S,, gives the product
orientation of V¥ @R". Set

-

if D, f(x) preserves the orientation,
if D, f(x) reverses the orientation.

Clearly f~'(0) is composed of a finite number of orbits, that is, f~'(0)=
W(H)x, U...UW(H)x,,. From the definition of G-Deg, we obtain

ProposITION 3.9. If 0 is a regular value for f|q then
2 n(x)  ifa=(H)and (H) € 0A,(G),
Yo=Ym(mod?2) ifa=(H)and (H)e OB,(G),
0 if a # (H),

where G-Deg(f, Q) =3,v,-a and f~'(0)=W(H)x,U .. UW(H)x,, and
W(H)x; " W(H)x; =0 for i #].

3.C. Construction of G-degree: several orbit types

To simplify notation, we put W:=V @®R", where V is a real orthogonal
finite-dimensional representation of the Lie group G. In this section, we are going
to construct G-Deg(f, Q) for an Q-admissible map f: V@ R" — V in the general
case where Q may have several orbit types.

Given a € O(G), it is well known that W, :={x e W: (G,) = a} is an invariant
submanifold, and v,: N*— W,, the normal bundle to W, in W, is a G-vector
bundle over W,

DeriNiTION 3.10. Let D be an open invariant relatively compact subset of W,
and € >0 a positive number. We call
ND,e)={v+weN veD weN |wl, <&}
an a-normal neighbourhood of D if each element of N(D, €) can be written

uniquely as x =v +w, where v e D and w € Nj with ||w|, <e.

Since D is a compact subset of W, clearly, for every sufficiently small £ > 0, the
set N(D, ¢) is an a-normal neighbourhood of D.

DeriNniTiON 3.11. Let f: W — V be an Q-admissible map and a € O(G). We say
that f is a-normal (with respect to Q) if there exist an open invariant relatively
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compact subset D € W, and an @-normal neighbourhood N(D, ¢€) such that
@) /' oyNw,NnQeD;
(i) MD, e)=Q;
(i) f(x)=f(v+w)=f(w)+w for all x e ¥(D, €), where x=v+w, veD,

w e N

DerFiniTioN 3.12. Let h: W X[0,1] =V be an Q-admissible homotopy and
a € O(G). We say that h is a-normal (with respect to Q) if there are an open
invariant relatively compact subset D =W, and an a-normal neighbourhood
N(D, €) such that

i) A~ N(W,NnQ)x[0,1]=D %[0, 1];
(i) ¥(D, £)=Q;
(iii) A(x,ty=h(@w +w,t)=h(v,t)+w for all x e N(D,¢), te|0,1], where
x=v+w,veD, we N

ProOPOSITION 3.13. Let a be a minimal element in $(Q):={(G,): x € Q} and
f: W —V an Q-admissible map. Then there exist an open invariant subset Q, < Q
and an a-normal (with respect to Q) map fy: W — V such that

(1) fox)=f(x) forall x e W,;
(i) fo(x) = f(x) for all x € W\Qy;
(iii) F'O)NW,NQS W, NQ,.

Proof. We choose € >0 and open invariant subsets D, and D, of W, such that
' oynw,nQeb,cDycD, D cQ,
Qo= N(D), 2e) =Q.

We can choose an invariant continuous function y: W —[0,1] such that
v(x) =1 for x € N(D,, €) and y(x) =0 for x € W\Q;. Then the equivariant map
for W=V, defined by
f(x) forx e W\Q,
y)f () +wl+[1 - y(x)]f(x) forx=v+weQ,
satisfies all the required properties, where x=v+w, veD,, weN; and
Iwll, <2e.

f =1

Using the same argument, we can obtain the following proposition.

ProPOSITION 3.14. Let a be a minimal element in $(Q). If h: W X [0,1]— V is
an Q-admissible homotopy, then there exist an open invariant subset Qy, < Q and an
a-normal homotopy hy: W X [0, 11— V such that

() ho(x, ) =h(x,t) for x e W, and 1 € [0, 1];
(1) ho(x, t) =h(x,t) for x e W\Qy and t € [0, 1],
(iit) A7'(0)NW, x[0,1]NQX[0,1]= W, X[0,1]NQ, X [0, 1].

Let f: V®OR"— V be an Q-admissible map. Our construction of G-equivariant
degree G-Deg(f, Q) will be conducted by induction over the orbit type in €. Let
#Q denote the number of elements of #(Q). Throughout our inductive
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procedure, we will use the following versions of the Additivity Property, the
Equivariant Homotopy Invariance Property, and the Product Formula.

(A)r Assume that #Q < k. If Q, and Q, are two disjoint open invariant subsets
of Q and f: W—V is an Q-admissible map such that f(x)#0 for
x € Q\(Q, U Q,), then

G-Deg(f. @) = G-Dee(f. Q,) + G-Deg( £, Q).

(H), Assume that #Q<k. If h: W X [0, 1]— V is an Q-admissible homotopy,
then

G-Deg(hy, Q) = G-Deg(h,, Q).

(P)x Assume that #Q=<k. If U is another orthogonal representation of G, U
is an open invariant subset of U such that 0 e %, and g: VOR"XU—->V XU
is defined by g(x, y)=(f(x),y) for (x,y)e VER" X U, then G-Deg(f, Q)=
G-Deg(g, QX ).

The proofs of (A)y, (H)x, and (P), will be carried in parallel with the
construction of G-Deg(f, Q) which is described as follows.

Step 1. In the case where #Q =1, the G-Deg(f, Q) has been constructed in the
previous section, and it has been verified that (A),, (H),, and (P), are satisfied by
the constructed G-Deg(f, Q).

Step 2. Assume that in the case where #Q <k, G-Deg(f, Q) has been
constructed for all Q-admissible maps f: W — V and satisfies (A),, (H),, and
(P)x. We now consider the case where #Q <k +1 and f: W — V is Q-admissible.
First of all, we choose a minimal element o € $(Q). By Proposition 3.13, there
exist an open invariant subset Q, € Q and an a-normal map f,: W — V such that

QcQ\W* and f'(O)NQSWUQ,.

Notice that #Q, < k. By the inductive assumption, G-Deg( fy, £2,) is well defined.
Choose x e QNW, and set H=G, From Step 1, we know that N(H)-
Deg(fy, ) has been constructed. Because Q,, conains only one orbit type (H)
(with respect to the N(H)-action), we may identify the degree N(H)-Deg(fy, Q)
with an element in AB,[G]. Consequently, we may put

G-Deg(f, Q):= G-Deg(fo, Q) + N(H)-Deg(fu, Qn),

where + denotes the addition in the group AB,[G].

Using the argument for Proposition 3.7, we can show that N(H)-Deg(fy, Qu)
does not depend on the choice of H such that (H) = «. Moreover, it follows from
the Additivity Property (A), that G-Deg(f;, 2,) does not depend on the choice of
Q,, nor on the minimal element a € #(Q).

We now claim that G-Deg(f;, Q,) does not depend on the choice of f,. Indeed,
assume that f; is another a-normal map satisfying all properties specified for
fo in Proposition 3.13. Then the map h: W X [0, 1]— V defined by h(x,t)=
tfo(x) + (1 = 0)fy(x), with (x, r) e W X [0, 1], is an Q-admissible homotopy between
fo and f;, and we can find an open invariant subset Q, € Q such that

Q,cQcQcO\W,,
h=(0)NQ X [0, 1] (W, UQ,) X [0, 1].
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Then by the inductive assumption (A), we have
G-Deg(f,, Q,) = G-Deg(f;, ,), fori=0,1,
and by the inductive assumption (H), we have
G-Deg(fy, Q) = G-Deg(f,, Q).

Consequently, G-Deg(f,, Q) = G-Deg(fi, &,). So G-Deg(f, Q) is well defined.

It is straightforward to verify that G-Deg(f, Q) satisfies (A)x+,-

To prove that G-Deg(f, Q) satisfies (H)s.,, we assume that hi: W X [0,1]—> V
is an Q-admissible homotopy. Choose a minimal element a e #(Q). By Proposi-
tion 3.12 there exist an a-normal homotopy «: W X[0,1]—> V and an open
invariant subset Q; of W such that Q;SQ\W,, «~'(0)N(QX][0,1]))c
(W, U ;) X[0,1], and «(x, t) = h(x, t) for (x, t) e W, X0, 1]. Therefore, « is an
Q;-admissible homotopy. By the inductive assumption (H),, we have G-
Deg(ko, Q3) = G-Deg(k,, Q;). On the other hand, by Proposition 3.8 we ensure
that N(H)-Deg(hoy, Q) = N(H)-Deg(h, 4, Q). Consequently, G-Deg(hy, Q) =
G-Deg(h,, Q).

It remains to verify (P),.,. For this purpose, we choose a minimal element
a € $(Q), an open invariant subset Q, =Q, and an a-normal map fy: W—V,
such that Q, € Q\W* and f5'(0)N Q< W, UQ,. Notice that g,: VOR" X U—
V X, defined by go(x,y)=(fo(x),y), is still a-normal. We find an open
invariant set Q, containing fg'(0) N W,, such that Q, N Q, =&. By the additivity
property, G-Deg(fy, Q) = G-Deg(fy, Q,) + G-Deg(fy, Q). On the other hand, we
have

G-Deg(gg, Q X U) = G-Deg(go, 2, X U) + G-Deg(go, 24 X U).
Moreover, by the inductive assumption (P),, we have that

G-Deg(go, Qi X U) = G-Deg(fo, )
and

G-Deg(go, Q4 X U) = G-Deg(fo, Q).
Consequently,

G-Deg(g, Q X U) = G-Deg(go, Q X U) = G-Deg(fy, Q) = G-Deg(f, Q).

This proves (P),., and completes our inductive proof for Theorem 3.3.

The rest of this section is devoted to the study of the multiplicity property of
G-degree for the case where n =0.

DeriNiTION 3.15. The Burnside Ring. Two finite G-complexes X and Y are said
to be equivalent (denoted by X ~ Y) if for all subgroups H =G the spaces X"
and Y have the same Euler characteristic. We denote by A(G) the set of all
equivalence classes of this relation, and by [X] € A(G) the class of X. Disjoint
union and Cartesian product of G-complexes are compatible with this equiv-
alence relation and induce addition and multiplication operations on A(G). The
set A(G), together with these two operations, is a commutative ring with identity,

which is called the Burnside Ring of G.

Let ®(G) denote the set of conjugacy classes (H) such that N(H)/H is finite. It
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is well known (see [6]) that A(G) is the free abelian group on [G/H],
(H) € ®(G), and for each G-complex X, the following relation holds:

(3.16) (X1= 2 x(Xu)G/H],

(H)e®(G)
where y. denotes the Euler characteristic using homology with compact support.
The multiplication table of the generators [G/H] is given by the relation

(3.17) [G/H]-[G/K}= D n,J[G/L],

(L)e®(G)
where n, = y.((G/H X G/K),/G). In other words, we can say that the number
n,, standing in the formula (3.17), represents the number of elements in
(G/H X G/K),/G, that is, it is the number of G-orbits in G/H X G/K of the
orbit type (L).

It is clear that, as an abelian group, A(G) is naturally isomorphic to
AB([G] = A([G], by a transformation which identifies a generator (H) of Ay[G]
with [G/H] € A(G). Consequently, in the case where n =0, the G-degree
coincides with the equivariant degree associated with the equivariant fixed point
index studied by H. Ulrich and others (see [27, 30]). In this case, G-degree takes
values in A(G), which has an additional multiplicative structure. The following
property of G-degree corresponds to the well-known multiplicativity property of
the fixed point index (cf. [30, I11.1.12, p. 73]).

THeoOREM 3.18. The following property holds.

(P6) (Multiplicativity Property) Let V, U be two orthogonal representations of
G, and Q<V and U<=U two invariant open bounded subsets. Assume that
f: V>V is an Q-admissible map and g: U— U a U-admissible map. Then the
map F. VX U—V XU, defined by F(x,y)=(f(x), g(y)), where (x,y) e V X U,
is Q X U-admissible and we have

G-Deg(F, Q X %) = G-Deg(f, Q) - G-Deg(g. U),

where the product is taken in A(G).

Proof. The proof of the Multiplicativity Property can be found in [30].
However, our construction of the equivariant degree is slightly different from the
construction of the fixed point index in [30]. Therefore, for the sake of
completeness we present a sketch of the proof of the Multiplicativity Property.

It follows from the excision and homotopy properties, as well as the standard
argument using the induction over orbit types, that we can assume without loss of
generality that f~'(0) NQ<=Q,,, and g~'(0) N U< Uk, where (H) and (K) are
the minimal orbit types in Q and % respectively. Moreover, we can also assume
that fis (H)-normal and g is (K)-normal. By using the same argument as in [30]
(see 1.3.2, Step 1), we can assume that f*: Q, — V" and g*: U — U* come
transversally to zero. Next, by using the excision property, we can assume that
both the sets f~'(0) N Q,, and g~'(0) N U consist of single orbits.

Under the above assumptions, F~'(0) N Q X % contains exactly n, orbits of
type (L) € Ay[G]. Let a:=(g,H, g,K) be an element in G/H X G/K. Then the
isotropy group G, consists of all h € G such that g;'hg, € H and g5'hg, € K,
that is, G, = g,Hg; ' N g,Kg5". This implies that the orbit types of F~'(0)NQ X U
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are minimal in Q X 9. Moreover, for every (L) such that there is an orbit of zeros
of F of the orbit type (L), the map Fis (L)-normal near this orbit. It is now clear
that the Multiplicativity Property follows from the formula (3.17) and the
definition of the G-degree.

ReMaRrk 3.19. We will use the Multiplicativity Property later only in the case
where G is an abelian group. In this case the map F satisfies the assumptions of
the transversality theorem of Hauschild (see [30, Theorem 1.3.2]), and moreover
the formula (3.17) can be simplified to

[G/H] * [G/K] = anK[G/(H ﬂ K)],
where nynk is equal to the number of all (H N K)-orbits in G/H X G/K.

Suppose that G is an abelian group; then AB,[G] = A,[G] and we can define
an A(G)-module structure on A,[G] as follows. For every (H) e O,(G) and
(K) e ®(G), the G-space G/H X G/K has only a finite number of G-orbits.
Indeed, by assumption, the group G/(H N K) has dimension n, and it acts freely
on the manifold G/H X G/K of dimension n. Thus the space (G/H X G/K)/G =
(G/H X G/K)/(G/(HNK)) has dimension 0, that is, is finite. We define the
action A(G) X A,[G]— A,[G] by

[G/K]- (H) = nunx(H N K),

where nynx is equal to the number of G-orbits in G/H X G/K.
By using arguments similar to those in the proof of the Multiplicativity
Property, we can generalize the Product Formula (P5) as follows.

ProrosiTioN 3.20. The following property holds.

(P5)' (Product Formula) Let G be a compact abelian group, V and U be two
orthogonal representations of G,Q<V ®R" and U< U be two open bounded
invariant subsets, g: VOR"—>V be an Q-admissible map, and f: U— U be a
U-admissible map. Then F: UXV @®R"— U XV, w