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1. INTRODUCTION

During the past several years, invariance principles of Lyapunov-
Razumikhin type have been provided for rerarded functional differential
equations (RFDES). The initial results and applications were given in [8]
for equations with finite delay with extensions to infinite delay equations
being supplied in [5, 9]. The purpose of this paper is to develop invariance
principles along with applications to include reutral functional differential
equations (NFDEs)

d
7 (Dx)=/(x,), (L.1)
where r >0 is a given constant, f: C= C([ —r, 0], R") > R" is completely
continuous, D: C — R” is linear, continuous and atomic at zero (cf. [12,
p.- 50]). For any continuous mapping x: [ -7, c0)—> R" and 120, x,e C is
defined by

x(s)=x(t + ), —-r<s<0.
Clearly, (1.1) reduces to an RFDE if Dg = ¢(0).
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To make the transition from finite to infinite delay RFDEs required new
results involving (i) comparison theorems using differential inequalities, (1i)
conditions for precompactness of positive orbits, and (iii) constructions of
various phase spaces. (See [5,9] for references and details.) Additional
complications, which have stalled extensions of Lyapunov-Razumikhin
invariance principles to NFDEs, are due to the natural relationship
between (1.1) and its generalized difference equation

Dy,=h =0
y.=h(t)  (:20) (1.2)
}’0':(/3’

where 4: [0, oo) = R" is continuous, ¢ € C.

In particular, since D¢ plays a fundamental role in results for NFDEs
much as ¢(0) does for the RFDE case, Lyapunov-Razumikhin conditions
have to be expressed in terms inequalities which compare between the
values of D¢ and ¢(s) for —r<s<0.

The invariance principles in [§, 8, and 9] have been applied to obtain
information about asymptotic behavior of solutions of various RFDEs, and
these applications have inspired the present work. More precisely, we
develop invariance principles of Lyapunov-Razumikhin type which
provides an effective tool for investigating asymptotic stability and
asymptotic constanct {convergence to constants at t — oo) of solutions of
NFDEs. Prototypes of equations to be studied for asymptotic constancy
are

%(x(t)— z": C,-X(t—r,-)) =H(x(t))+H<i b,-x(t—r,-)) (1.3)

i=1 i=1

and

i(x(t)—j g(s) x(1 —5) ds> =F<—ax(z)+j k(s) x(t —s) ds) (1.4)
dt 0 0
under the assumption that each constant function is a solution.

Although an invariance principle for NFDE:s is available [12, p. 297], it
often is difficult to apply since it requires the construction of a functional
V: C - R whose derivative is negative semi-definite along solutions of a given
equation. Likewise, Lyapunov—-Razumikhin asymptotic stability theorems,
based on an important inequality of Cruz and Hale [2], already exist (see,
cf. [11, 19]) but applications of these results generally require the equation
at hand to have an ordinary part which “dominates” a functional (delay)
part. Our results and techniques are designed to avoid this restriction. In
order to accomplish this, we have been forced to generalize the Cruz-Hale
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inequality in a nontrivial way. In particular, we obtain a new estimate in
termas of ~ and ¢ for the solution y of (1.2) (see Lemma 2.3).

The notation, preliminary results, and the above mentioned estimate
with its consequences are contained in Section 2. An invariance principle
is developed in Section 3, and then applied to obtain new results for
asymptotic stability (Section4) and asymptotic constancy of solutions
(Section 5).

Finally, an interesting phenomenon should be emphasized. Namely,
some of our resuits (Lemmas 3.3 and 4.1 and Theorems 4.1 and 5.1) cannot
be applied to retarded equations. The fact Do #Z ¢(0) plays a crucial role
in the proof of these results.

2. PRELIMINARIES

Let r>0 be given and let C=C([—r, 0], R"). For ¢ € C the norm of ¢
is defined by

ol = max {o(s)],
where | - | denotes the Euclidean norm in R". For x, ye R", {x, y) is the
inner product in R". Suppose x:[—r, o0)— R" is continuous. Then, for
any 120, x,e C is defined by x,(s)=x(t+3), —r<s<0.
Consider the NFDE

d
Z(Dx,)=f(x,) (1=0) (21)

with the initial condition
Xo= @, (2.2)

where f:C— R" is completely continuous and D:C - R" is linear,
continuous, and atomic at zero in the sense of [12, p. 50]. Under these
assumptions the solution x(@)(-) of the initial value problem (2.1), (2.2)
exists. Further, we assume the uniqueness, continuous dependence, and
continuation of solutions (for details, see [127).

By an n x # matrix measure on [0, c0) we mean an nxn matrix-valued
function n whose entries are of bounded variation on [0, oo). The total
variation measure |#| of » is deduced from the # x » matrix norm.

For a given ae R we introduce the weighted space of continuous
functions C, by

sz{(PEC((‘OO,O],R"). hm e*p(1)=0)
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with norm

[l = supe® |p(t)].

t<0

For 2 € R let M, be the set of the n x n matrix measures n satisfying

nhe= ] e dinl (1)< 0.

For ne M, the convolution operator vx: C, — C, is defined by

vl = [l et—s) (<0

Since the operator D in (2.1) is atomic at zero, without loss of generality
we may assume that

Dp = p(0)— [ " [dv(s)] ()

where v is an n x n matrix measure with v(0)=0 and v(s)=v(r) for s>r,
moreover |3 d|v] —0 as s >0+ (see [12, p. 280]).

Throughout this paper we assume that the operator D in (2.1) is stable.
That is, the zero solution of the homogeneous “generalized difference”
equation

Dy,=0  (120), (23)
Yo= s (24)
is uniformly asymptotically stable, where ¢ € Cp, = {@e C:Dp =0}.

It is shown in [12] that (2.3), (2.4) generates a strongly continuous
semigroup of linear transformations T,(1): Cp — Cp, by Tp(t)o =y (p),
t 2 0. Moreover, the following lemma is valid.

LemMa 2.1 (Hale {12, p. 287]). The following statements are equivalent:

(i) D is stable.
(i) a, <0, where ap is the order of the semigroup T (1), defined by
ap=inf{ae R: there is a K = K(a) such that || Tp(#)l| < Ke*, t > 0}.

(iit) There are constants a>0, b>0 such that for any @€ C any
he C([0, cv), R") the solution y of the nonhomogeneous equation

Dy, =nt) (120), (2.5)
Yo=9, (2.6)
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satisfies

Iyl <be " lloll+b sup |a(s)l  (£20). (2.7)

O0<s<t

Let us define the measure & by

0 if =0
5“)—{1 if >0,

where [ is the n x n identity matrix. Let u =6 — v. Obviously, u € M, for any
xeR.

Thus, if ¢ e C and ¢ is extended to (—oo, 0] such that the extended
function is in C, for some a € R, then

Do = p * ¢(0).

Some important properties of u as an operator in C, are formulated as
follows.

LEMMA 2.2 (Staffans [21]). If x< —ay, then the operator pux maps
into itself continuously, is invertible, and its inverse operator u '* is
Ysu=pxu'=5and py, u= ' e M,. Moreover,

¢,
continuous with pu~

—a, =sup {aeR:! ‘e“’dly"l (t)<oo}.
0

Applying Lemma 2.2, the estimate (2.7) for the solution of (2.5), (2.6)
can be improved significantly as follows.

LemMMa 2.3. Ifae[0, —ayp), then for any ¢ € C and any he C([0, «o), R")
the solution y of (2.5), (2.6) satisfies

1<l ol e [ el 19+ Ihe=s)ld a5
<lull ol e [~ e=diu~ (5

+[ e dlu| (5) max e ® U lh@)|  (120).
0 O<us<st

Proof. Let a€[0, —a,) be given. Choose ve C(R, R") such that
Iim,_ ., e*o(t)=0, v(t)=@(1) for —r<t<0 and ¢* |v(¢)] < ||| for all
te R

Let y(1)=v(t) for t < —r and define z(¢) by z(+) = y(¢)—v(¢) for all te R.
Then z(¢)=0 for t<0 and Dy,=u=*y,(0)=pux*z,(0)+ pu*v,(0)=h(1)
(t=0).
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Let

m_{o if 1<0
BO= My —uxo0)  if >0

From D@ = u * v4(0)=h(0) it follows that g is continuous on R and
g,eC, for all re R, where g,(s)=g(t+s), s<0. Since

p*z(0)=glt) (—xc<i<owo),
Lemma 2.2 implies that
z(ty=p ' % g,(0) (—o0 <t< o)
Hence,
WD =v(t)+u ' *g,0) (—oc<t< )
Using the estimate

sup e [ * v,(0)] < [lull, sup e [v(s) < llull, el

seR seR

we readily obtain that

0= ot + [ T~ '(5)T gl =)

- u(z)+f(: [di () I[h(t—s)— p v',x,(O)]‘

N

o) = [ T~ (5) T w0+ [ T~ (5) T v, (0)

#0110

<e;wJ’ e“d|ﬂ71| (s)supe“"’"’m*vn u)(0)|
'

uzt

[ b= din )

<l lghe = [ e din 1 )+ [ hi=s) d1u 1 (s)

t 4]

<l dole™ [ e diu "1 (9

+j0 e d|p " (s) max e ¥ k()| (13=0),

Osu<r

which completes the proof.
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Remark 2.1. (i) If, for some a=0, j{) e*d|v| (1)<1 holds, then
jox e* dip] (1)< oo also holds, and by Lemma 2.2, —a,>«. In this case
llull, and {|ju~"'l|, can be easily evaluated. Obviously,

<14 e dlv] (1),

u~'=(0—v)"" can be expressed by the convergent series 6+ v+ v * v+
vxvxv+ ... from which it follows that

u;r"n;fo edlu | (<1+ Y L#“"”’dw*v* v
k=1

k-times

x r k r -1
<1+ ) (J ex dlvl (l)> =[1—J e* d|v| (t):| )
k=1 \"0 0

(ii) It is easy to see that if u#9; ie, Do Z ¢(0), then ||u|, and
lu~'il, are strictly increasing in « e [0, —ap).

(iii) It is obvious that lim, ., Jul,=1 and 1/[ul.<lug ..
Therefore, the monotonicity of ||u ||, implies that [|g="|, = 1.

Lemmas 2.4, 2.5, and 2.6, which are used frequently in the next sections,
contain special consequences of Lemmas 2.2 and 2.3.

LemMa 24. IfyeC([—r, ), R"), be R, 1,€ [0, w0), [1llo | ¥oll < b and
MaXg << | Dyl <b, then |y, | <b "o

Proof. Lemma 2.3 with a =0, h(t) = Dy,, ¢ =y, implies that
YOIl lyall [l )+ [ dli™'1 ()< 1"l

for all 0<t<ty. If —r<e<0, then |y(2)|<Iyoll <llulollpoll <b<
bllu "o, since fullg=1 and (™ "fo= 1. Thus, [y, <& [l "l

LemMMa 25 If ye C(R,R"Y, Bel[0, —ap), be R i, R and
sup, <, e "% |Dy | <b, then

Mt =< 1Dyl d i M) (520)

and

Iyl <be™ Iu™"l 5.
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Proof. Since the function z(s) =Dy, ,,, s<0,is in C, for x e (B, —ap),
by Lemma 2.2, the function p~'#z,(0), s<0, is well defined. From our
assumption, |z(s)| <be %, s<0. So, it follows that |u~'=*z _ (0)|<
J& 1z(~s—w)l dlu | (@) =[F 1Dy, Jdla 't (w), >0, In addition,
w20 <e Pb[F e™dlp | (W< | "yb, —r<6<0. From
2(0)=Dy,,o=H*y,+00) and p~'x p=27 it follows that ' * z4(0) =
y(to+ 0). Thus the proof is complete.

LEMMA 2.6, If ye C(R, R") and y is a bounded solution of (2.1) on R,
then y(t) and Dy, are uniformly continuous on R.

Proof. From Dy, = u=*y (0) it follows that 1Dy,;— Dy,| <
lullo ¥, —»,ll. So, the uniform continuity of y(t) implies that of Dy,.
There is K> 0 such that ||y, || < K for all re R. From Eqg. (2.1)

n—u
Dylzfu_Dyll—ulz f(y.\) dsa
H—u
and by |y I <K, |Dyl<|lull, K follows. Thus Lemma 2.5 can be applied
with any 7€ R to get

9(e) =y < | 1Dy = Dy a1 ()

<70 Trardsd e w)

h—u
<l Mo Lty =14,
where L=sup{|f(¢):0eC, ol < K}. This completes the proof.

Let ¢ € C and suppose x(¢)(-) is defined on [ —r, o0). The w-limit set
Q) of x(¢) is defined by Q(¢)={y e C: there is a sequence {7,} such
that 1,20, 1,— o0 and |x, (@)—y|| > 0asn—o0}.

A set M < C is said to be invariant with respect to (2.1) if for any pe M
there is a function y: (—o0, o) — R" such that yo=1¢, y,e M for all te R
and y is a solution of (2.1) on R. For the w-limit set of bounded orbits of
(2.1) we have the following

LemMMA 2.7 (Hale, [12, p.293]). If {x(¢@): 1 =0} is bounded, then Q(¢p)
is nonempty, compact, connected, invariant and x () — Q(@) as t = .

Our main purpose is to locate 2(¢) by using a Lyapunov function, in
the spirit of [18] for ordinary differential equations and [8] for RFDEs.
For NFDE:s it is natural to use Lyapunov functions of the form V(De),
where V': R" — R is continuous. In order not to hide the main ideas behind
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technicalities, we consider only the special case V(x)= {x, x> The
derivative of V(Dg)= (D¢, D> with respect to system (2.1) is defined by

V(z.l)(D(P) =2 { Dy, f((P)>
Obviously, if x is a solution of (2.1) on [0, a), a > 0, then for any ¢ € [0, a)

d .
= V(Dx) =V (Dx,).

A set M = C is said to be stable if for any £ > 0 there is d = d(¢) > 0 such
that dist(¢p, M) < implies dist(x (), M)<¢ for all t =20. M is asymptoti-
cally stable if M is stable and there exists §,> 0 such that dist(p, M) < J,
implies dist(x,(¢), M} —>0 as t > cc.

For a nonnegative ¢, define K(c)={peC:|Dp|=c}. Let M(c) be the
largest subset of K(c) which is invariant with respect to (2.1), that 1is,
M(c)={peC: there is ye C(R, R") so that y is a solution of (2.1) on R,
Vo=, y,€K(c) for all te R}. Let M ={J.,, M(c).

For xe [0, —a,) consider the conditions

lol <llu='l, | Dol implies (Do, f(p)) <0, (A,)
ol <lu ', | Dol implies (Do, f(¢)> <O0. (B,)

For a nonempty set H < (0, ) we also introduce the assumption

If o) < g 'llo |De| and there exist s € H such that

lp(—5)| < llu 'lo | Del, then {De, f(@)) <O0. "
The condition
0<lo(—5) = el <llu~"lo Dol
forall se[O0, r)implies (Do, f(p)>>0 (E)

is also used in the next sections.
Note that in the case «a=0, D¢ =¢(0), condition (A,) is the usual
Razumikhin type one used, e.g., in [3, 8, 14, 16, 207]:

l(0)] = @]l implies {(0), f(¢)) <0.

3. AN INVARIANCE PRINCIPLE VIA LYAPUNOV FUNCTIONS

The following lemma provides the cadre for our additional results. The
idea is simple and certainly not new in the literature (see, cf. [7]), but, for
the sake of completeness, we prove it.
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LemMma 3.1, If {x,(@):t =0} is bounded and there exists a stable subset
S< C such that Q{(p) S is nonempty, then x (p)— S as t —» .

Proof. 1t suffices to prove that for any ¢ >0 there is 7= T(¢) >0 such
that dist(x (@), S)y<efor all t = T. Let ¢ > 0 be fixed. Since S is stable, there
exists 6 >0 such that 2e C, dist(4, S)<d imply dist(x,(1), S)<e for all
t20. Let ¢ € Q(¢)n S. By the definition of 2(¢), one can find T2 0 such
that |x,(¢)— | <d. Then dist(x,(¢@), S)<d and, thus, dist(x,(¢), S)=
dist(x, _ 7 (x7(®)), S)<e¢ for all t = T. The proof is compiete.

In this paper, Lemma 3.1 will be used in the case S= M(c) for some
¢ = 0. In order to do this we have to guarantee that
(i} {xf¢@):r=0} is bounded;
(il) Qo) M(c)# J;
(iit) M(c) is stable.
It turns out that sufficient conditions for (i), (ii), and (iii) can be given and
M(c) can be located by using the Lyapunov function V(D)= (D¢, D¢ >.

Boundedness of solutions and stability of the zero solution of (2.1) are
guaranteed by the following lemma

Lemma 3.2, If (Ag) holds and ¢ € C, then

lx (@) < Npllo e~ o @l (£20).

Proof. Let x=x(¢) and
W(r)=max{V(Dx,), lu|5 le|*}  (£20).

We will show that the upper right hand Dini derivative D™ W(¢) <0 for all
1> 0. This will imply W(1) < W(0), ie.,

|Dx | <max{|Del, lulo llo}} <lulollel  (£20),

since |Do| <llplo ll@l. Hence, by applying Lemma 2.4 with b= |lull, lle],
¥(1) = x(t), we obtain that |x [l < ull e llo lell, 1=0.

If D*W(t)<0 is false, then there is 1 20 with W(s)< W(1), 0<s<1,
and D*W(z)>0. Since V(Dx,)< W(tr) implies D*W(t)=0, one gets
W(t)=|Dx,|*=max, . |Dx,?> |ull3 o] Consequently, there exists a
sequence 7, —» 0+ such that W(t +1,)={Dx,, |°>|Dx,|*= W(t) and

0<D*Wit)= lim 1; (W(z—1,)— W(z) = Vo, (Dx,) = 2{Dx,, f(x,)).



INVARIANCE PRINCIPLE OF NEUTRAL EQUATIONS 405

On the other hand, from maxgyc . |Dx,|=|Dx| > llulollel, and
Lemma 2.4, {x. || <{iu i, | Dx,| follows. So, (A,) implies {Dx_, f(x,)> <0,
a contradiction, which completes the proof.

Remark 3.1. In case D¢ =¢(0), Lemma 3.2 gives the following well
known result for retarded equations [3, 4, 8, 14, 16, 20]:

If, for any @€ C, |@(0)| =l implies {¢@(0), f(¢)> <0, then for any
@€ C we have [lx (o)l <|el, 120.

Now, we turn to the problem of Q(¢) M(c) # & for some ¢=0.

LeMma 33, If u#d (ie, Do #Z @(0)) and (A,) holds for some
a2e (0, —ap), then Q(p) N M is nonempty.

Proof. Let oeC be given. Lemma 3.2 implies ((A,)=>(A,)) that
{x,(@):t=0} is bounded. By Lemma 2.7, Q(¢)# . Let ¥ € 2(¢). From
the invariance property of 2(¢) there is a bounded y e C(R, R") such that
yo=1, y is a solution of (2.1) on R and y,e Q(¢p) for all e R. By (i1} of
Remark 2.1 there is Be(0,a) such that e |u~'|,<|u""l,. From
Lemma 2.5 with b=|Dy,|, it follows that if sup,_,e #“~ ) |Dy |=|Dy,|
then |yl <e® ="l 1Dy <lln "I |Dy,| and, by (A,), (d/dt) V(Dy,) <O.
Thus, a standard Razumikhin type argument (see, cf. [6, 10, 227) can be
employed to show that sup, ., e #“~*'|Dy | is a nonincreasing function of
t on R. Let

c=lim (supe %= |Dy}).

t—> o s<t

Claim. lim,_ . |Dy,|=c.

If not, then ¢>0 and there exist £¢>0 and a sequence {z,} such that
t,— o0 as n— oo and |Dy, | <c— 2e Since Dy, is uniformly continuous on
R by Lemma 2.6, there is 7 > 0 such that |[Dy, ,,<c—e¢forall —1<0<0.
Therefore, we obtain

c= lim (supe=#"~*|Dy|)
n—oc SKi,

< lim max {e % sup e P9 |Dy|,c—e}

n— $<th—1
<max {—efc,c—¢} <q,
a contradiction.

From the claim, (i) < K(c) follows. Since Q() is invariant, Q(y )<
M(c¢), thereby we complete the proof.

Now, we show that Q(¢)n M # ¢ can be obtained by assuming (A,)
and an additional natural condition instead of (A,), 0 <a < —a,. In order

505.107:2-14
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to do that, for a nonempty set H < (0, r], let us define # = {s€ R: there
is a positive integer k and r, r,, .., e Hsuch that s=r, +r,+ --- +r.}.
We need the following simple, technical lemma, which essentially was
shown in [8, p. 108].

LemMA 3.4. Assume that H< (0, r] is a nonempty set such that either
there exist ri, r,€ H so that r,/r, is irrational, or the set H is infinite. Then,
for any >0, there exists T=T(g) =0 such that if t = T, then it — s} <g for
some s H .

Proof. Let £e>0 be given. We can choose positive integers p, ¢ and
suitable r,, r, € H such that 0 < gr, — pr, <e. Indeed, if H is an infinite set,
then in a neighborhood of every accumulation point of /A there are suitable
ry,r, with p=g=1. If r,,r,eH and r,/r, is irrational, then, from
Dirichlet’s theorem in number theory, for every natural number 2, there
exists a rational number p/q >0 such that |r,/r, — p/q| < 1/mgq, from which
one gets the desired numbers.

Let N be an integer such that N> pr,/(qr,—pr,) and T=T(g)= Npr,.
For any ¢ > T there is a positive integer k> N such that te [kpr,, kqr, ],
because /= N implies lqr, 2 (/+ 1} pr,. Since the numbers kpr,, kpr, +
(gra—pry), kpry+2(qry—pry), .., kpri+ (k—1)(gr,—pry), kqr, are in #
and form an arithmetical sequence with difference gr, — pr, <e, the proof is
complete.

Lemma 3.5, Let H< (0, r] be a set such that either there exist r\,r,e H
so that r[ry is irrational, or H is infinite. If (A,) and (Cy) hold, then
Q(@) N M is nonempty.

Proof. Let ¢ e C be given. By Lemmas 2.7 and 3.2, Q(¢) is nonempty,
compact and invariant. Let € 2(¢). There is a bounded solution y of
(2.1) on R such that yo,=4 and y, e Q(¢) for all re R.

Lemma 2.5 implies that if sup,.,|Dy,|=|Dy,| for some te R, then
iyl <lle o |1Dy,l. Then, from (A,), (d/dt) V(Dy,)<0 follows. Thus,
sup, ., |Dy,) 1s a nonincreasing function of ¢ on R; consequently, it is
constant. Let ¢ =sup, ., |Dy,|. There is a sequence {r,} such that ¢, - —o0
and [Dy, | — ¢ as n— oo, By using the diagonalization procedure, there is
a subsequence, again denoted by {r,}, such that

Wty +s)=2(s)  (n—> )
uniformly in s on any compact subset of R. Then, z will be a bounded

solution of (2.1) on R, z,€ Q(¢) for all te R, |Dz,l = ¢ and |Dz,| < c for all
teR.
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Claim. lim,_ __ |Dz,|=c.

If not, then ¢>0 and there exist y>0 and a sequence {7,} such that
t,— —oo and |Dz, | <c—2y. By Lemma 2.6, Dz, is uniformly continuous
on R. So, one can choose ¢ >0 such that |Dz, , 4/ <c—7yforall 0e(—¢,e¢)
Since V(Dz,) attains its maximum ¢, at (=0, (d/dt)V(Dz),_o=
2¢ Dz, f(z5)) =0, assumption (C,) gives that |z(—s)| = ||u ||y ¢ for all
s€ H. On the other hand, from Lemma 2.5, it follows that | Dzy| = ¢ implies
lz(to —5)) < & 1Dz_,_Jdlu "1 {u), s 2 0. Thus, |z(—s)] = g loc
implies |Dz _,| =c, because 0 is in the support of the measure |u~'|. So,
from |Dz,| =c and |z(—s)| = |~ "o ¢, 5 € H, one obtains [Dz | = ¢ for all
se H. Since from |Dz_ |=¢, {(Dz_,, f(z_,)>=0 follows, the above
argument can be iterated to get

|Dz_|=c (se ).

Let 7= T(¢) be the number given in Lemma 3.4. Let » be so large that
—t,2T. By Lemma 3.4 there exists se€ s such that 1, —e< —s<1t,+e¢
Then, |Dz _ | <c—1, a contradiction.

Again, by the diagonalization procedure, one can find a sequence {z,}
such that ¢, - —oc and

z(t, + 5) = v(s) (n— o)

uniformly in s on any compact subset of R. Then, v is a solution of (2.1)
on R, v,e Q(¢)forall te Rand |Dv,|=cfor all te R. So, vy 2(¢) N M(c),
and the proof is complete.

Remark 3.2. Note that in the proof of Lemma 3.5 we used only the
fact that 0 is in the support of the measure |u '), denoted by U. Thus,
the condition on H in Lemma 3.5 can be weakened. Let H+ U=
{seR:s=h+u he H ueU}. It is not difficult to see that it is enough to
assume that either there are r|, rye H+ U such that r,/r, is irrational or
the set (H + U)n (0, a) 1s infinite for some a > 0.

We conclude this section with a brief discussion concerning stability of
M(c). From Lemma 2.5 it follows that M(0)= {0}. Thus, by Lemma 3.2,
M(0) is stable under condition (A,). This will be useful to prove asymptotic
stability of the zero solution of (2.1) in Section 4. The stability of M(c) for
¢>0 will be considered in Section 5 to get asymptotic constancy of the
solutions of (2.1).
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4, APPLICATIONS TO ASYMPTOTIC STABILITY

Asymptotic stability of the zero solution of (2.1) can be obtained from
the results of Section 3 by guaranteeing Q(¢) n M(0) # J; i.e., 0 (o).
From the next two lemmas we see that M(c)= J for ¢ > 0.

LemMMa 4.1. If u#d (ie, Do # ¢(0)), (B,) holds with some
ae (0, —ap), then M(c) is empty for all ¢>0.

Proof. Since u#3, fe(0,a) can be found such that e ||u='|z<
=M, If M(c)+ & for some ¢ > 0, then there is a bounded y € C(R, R"),
which is a solution of (2.1) on R and [Dy,|=c for all te R. Then,
by Lemma25, |y <ce’ |u~",<lu 'l.IDyl. So, (B,) gives that
{Dy,, f{y,)><0. This is a contradiction, because 2<{Dy,, f(y,)> =
(d/dt) V(Dy,) = (d/dt) |Dy,|* = (d/dt) > = 0.

Lemma 4.2, If H=(0,r) is a nonempty set and (C,), (E) hold, then
M(c) is empty for all ¢>0.

Proof. Let ¢>0 and ¢ € M(c). There is a bounded solution y of (2.1)
on R such that y,=¢ and |Dy,|=c for all te R. Then, {Dy,, f(y,)>=0
for all € R. Since, by Lemma 2.5, we have || v,| < liju ™", |Dy,| forall te R,
(Cy) implies that | y(r—s)=|lju" "}, 1Dy, = s~ 'focforall te R and se H.
Consequently, [y(£)] = |yl =g oDyl =g "Il poc>0 for all reR.
Thus (E) gives the contradiction {(Dy,, f(y,)> <0.

Now, we are in the position to state the following asymptotic stability
results.

THEOREM 4.1. Assume that p+#6 (ie., Dp Z ¢(0)), f(0)=0 and (B,)
holds for some a€ (0, —ap). Then the zero solution of (2.1) is asymptotically
stable.

Proof. Observing that (B,) implies (A,), 0 <a < —ap, and M(0)= {0},
we readily obtain our statement by combining Lemmas 3.1, 3.2, 3.3,
and 4.1

THEOREM 4.2. Assume that f(0)=0, (A,), (E), and (C,) hold with a
set H= (0, r] which is either infinite or contains r,r, such that r/r, is
irrational. Then the zero solution of (2.1) is asymptotically stable.

Proof. Apply Lemmas 3.1, 3.2, 3.5, and 4.2.
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ExaMpLE 4.1. Consider the system

dit(x(t)—Cx(t——r))zF(x(t)—Bx(t—r)), (4.1)

where r >0, B, C are nxn matrices |B—C|<1—|C|, |C|#0, F: R"—> R"
is continuous, F(0)=0, and {u,»)>>0 implies <{u, F(r)> <0 for all
u,ve R". Then V(Do) =2{Do, F(o(0) — Bp(—r))> = 2{D¢, F( D¢ +
(C—B) @¢(—r))). Choose >0 such that |B— C| <1 —|C|e*. Then, by
Remark 2.1, x|, Do) <(1—|C|e*) " |Dg|. Therefore, under the
condition {|| <{lu~'{.|Del,

(D@, Do+ (C—B) o(—r)) > |Dg|* — (Do, (C~ B) p(—r) |
> |Dy|*— Dol |B—C| (1 —|C| e”)"" | Do
=|Dg|* (1 - [B—C| (1=|Cle”)"")>0.

Thus, Theorem 4.1 implies that the zero solution of (4.1) is asymptotically
stable.

ExampLE 4.2. Consider the scalar equation

(0 —eyxti—r) = exxli =)
= —ax(ty+ b, x{(t —r )+ byx(t—r,)

1
— (x(0) —erx(t=r) = eax(t = ra))(x(0) =5 x(1 — 1)), (42)

where r,>0 (i=1,2,3), ri#r,, O<|c|+]lcl<l and |ac,—b,|+
lac; — byl <a(l—|ei| —le,l). Here (Do) flo)= —(Dyp)a D¢ + (ac, - by)
@(—r)+(ac;—by) p(—r1))—(D9)* (9(0)—f(—r3))% Clearly, |lp~'llo<
(1 —|c,| —|cs])~" in this case. In the same way as in Example 4.1, by
applying Theorem 4.1, it can be obtained that under the condition

lac, — b,] + |ac, — by| < a(l —|ei| —lcal),

the zero solution of (4.2) is asymptotically stable.
Assume that

ac, #b,, ac, #b,, lac, —b,| + |ac, — byl = a(l —[c(] = |c,]) > 0.
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Then || < {u'll, Dol implies that (Dg) f(¢)<O0. In addition, if either
lo(—r)l <llell or lo(—ry)|<lel, then (Dg) f(¢)<0. So, choosing
H={r,,r;}, (C,) holds. Moreover, 0<|p(—s)|=lo|<lu""l,|Dgl,
0<s<r, implies (Dg) f(¢)<0. Thus (E) also holds. Therefore, if r,/r, is
irrational and |ac, —b,| + |ac, — b;| =a(l — |¢,| — |c,{) >0, then the zero
solution of (4.2) is asymptotically stable.

5. APPLICATIONS TO ASYMPTOTIC CONSTANCY

The asymptotic constancy problem will be considered merely for one-
dimensional equations. This restriction is done because the sets M(c), ¢ >0,
in general, contain more functions than constants in the higher dimensional
case. If fact, in the higher dimensional case there is no general theory of the
problem of asymptotic constancy even for retarded functional differential
equations.

Before giving asymptotic constancy results, we prove two lemmas for the
n-dimensional case. The first one is very important in the study of NFDEs.
It states that the asymptotic constanct if Dy, is equivalent to that of y(1).

Lemma 5.1. If ye C(R, R") is bounded, the limits ( provided they exist)

lim p(t)=y(0) and lim Dy, = Dy(c0)

=

are equivalent; moreover,
yeo)=[" L '©1Dye)  and  Dy(eo)= | [du(s)] p(ce)

Proof. Choose xe (0, —ap). Then y, e C, for all re R, where y(s)=
y(t+5), s<0. Thus Dy,=pu* y,(0) and by Lemma 2.2, p(t)=pu "' *z,(0),
where z(t) = Dy,. Let K= 0 be defined so that | y(¢)| < X, |Dy,] <K for all
te R. Assume lim,_, , Dy ,=Dy(o0). Let ¢>0 and find T, >0 such that
|Dy,— Dy(w0)| <¢ for t = T,. Then, for t 2 T,

y) =] L] Dy(oc)} = ; " Ldn )1 Dy, - Dy(oc))j
<[ 1Dy, = Dy(eo) i )

sjo" dp )+ 2Kd I ()

1— T
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So, there exists T, >0 such that |y(1)— [ [du~'(s)]1 Dy(oo)| <2e u="|l,
for all 1>7,. Therefore y(r)—y(c0)=[g [du '(s)] Dy(cc). The other
direction of the proof is analogous, so it is omitted.

Let x be a solution of (2.1) and define y(¢)=x(t)—k for a ke R"
satisfying f(k)=0, where, and in what follows, k denotes either a vector in
R" or a constant function in C with value k. Then y satisfies

d
7 Dy =1y, +k). (5.1)

Thus, the solution of the constant solution x=+k of (2.1) is equivalent to
the stability of the zero solution of (5.1). Evidently, Lemma 3.2 implies

LEMMA 5.2. Assume that f(k)=0 for a constant k in C, and for any
peC

lel <lie="lo Dol implies (Do, flop +k)> <0 (A5)
Then, for any @ € C, the solution x(¢) of (2.1) satisfies

Ix @)=kl <liplo lu"llo lo =kl (£20).

Now, we can state the following asymptotic constancy results for scalar
NFDEs.

THEOREM 5.1, Assume that n=1, u#9, (A,) holds for some 0 <o <
—ay, and (A%) is satisfied for any ke C that f(k)=0. Then any solution of
(2.1) tends to a constant as t — .

Proof. Let ¢ e C and x=x(¢p). By Lemma 3.3 there is ¢ >0 such that
W e Q(p)n M(c) for some € C. Then there is a solution y of (2.1) on R
such that yo=¢ and |Dy|=c for all te R. By continuity Dy,=¢ for all
te R, where ¢=0 if ¢=0, and ¢ is either ¢ or —c¢ if ¢>0. Lemma 2.2
implies that y(1)=¢ [ du ' for all re R. So, ¥ is constant. Moreover,

d
0=—V(Dr)=<& f(y)> =L f))).

Hence, f(¥)=0, whenever ¢ #0. Thus, in the case ¢#0, ¥ is stable by
Lemma 5.2. The stability of the zero solution (the case ¢ = 0) follows from
(A,) by Lemma 3.2. Therefore, from Lemma 3.1 it follows that x (@) — ¢
as t — oo,
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THEOREM 5.2,  Assume that n=1, (A,) holds, and (AL) is satisfied for
any k € C such that f(k)=0. Moreover, assume (Cy) is valid with H< (0, r]
such that either H is infinite or there exist r\,r,ec H so that r jr, is
irrational. Then any solution of (2.1) tends to a constant as t — .

Proof. Let ¢ e Cand x=x{¢). By Lemma 3.5, there are c >0 and y € C
such that € 2(¢) » M(c). In the same way as in the proof of Theorem 5.1,
it follows that v is constant and a stable solution of (2.1). Then Lemma 3.1
implies our statement

ExamPLE 5.1. Consider the scalar equation

%<x(z)—f g(s) x (t—s)ds) (—ax(t)+£)rh(s)x(t—s)ds), (5.2)

where g, A: {0, 7] — R and F: R— R are continuous, and
(i) xF(x)>0if x£0, F(0)=0,
(i) Jole(s)ds<t,
(ii1) h(s)=ag(s) for all se[0,r], A(-)—ag(-)#O
(iv) foh(s)ds=a,
(v)  Jolh(s)—ag(s)) ds <a(l— G |g(s)| ds).

For this example, by Remark21, |u 'llo<(1—J7lg(s) ds) "
Assuming

loll <l i |Del,

we have
00) (~aw(0)+ [ s) ol =) )
= (00)(—a D+ [ his) ) () )
< —alDp)* +1Do| | (his) - ag(s)) lip| ds

< a0+ 1Dl | ths) —ag(sn ds (1 [ ets) ds) <0

If H={se(0,r]:h(s)—ag(s)>0} and |@(—s)| <|lu"'lo|De| for some
s€ H, then (Dp)(—ap(0)+ [, h(s) p(—s)ds) <O0. It is obvious that H is
infinite. So, (A,) and (C,) hold with an infinite H, by (i). Any constant
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solution is stable, since for any ke R, F(—ap(0) +j{, his) p(—s)ds)=
F(—a(e0)+ k) + f(’) h(s)(@(—s) + k)ds). Thus, Theorem 5.2 can be
applied to assert that any solution of (5.2) tends to a constant as r — oo,

ExampLE 5.2. Consider the scalar equation

d m bl
7 (x(t)— Y c,-,x(tﬂr,)> =—h(x(t)+h ( Z bix(tvr,)), (5.3)
i=1 i=1
where m=2, ¢,>0, r,>0, i=1,.,m 7  ¢;<1, r /ry is irrational, b, =
/X e i=1,,m h:R—>R is continuous and strictly increasing.
Let H={r,:i=1,..,m}. From Remark 2.1, u 'lo<(1=%",¢c)""
follows. Let ke R and assume that

lol < lu "o 1Dol.

If, in addition, ¢(0)< X7, c;@(—r;), then we have

n ”n -1 m
- % bot-ry<loi<(1-% c) (% col-r-o0)

i=1 i=1 i=1

and thus k+@(0)<k+Y7 b,o(—r,), that is, (De) fle+k)<0. If

i=1

P(0) =371, ¢;o(—r,), then

Y b,«w(—r.-)sllwliS(l— Y C,-)‘ ((p(O)— Y C.w(—r,-)>,

i=1 i=1 i=1

from which k+ @(0) = k+3Y*_, b,o(—r,) follows; that is, (Do) f(¢+k)<O0.

If we also have [o(—r,;)| < |lu 'l |Do| for some r;e H, then D¢ #0 and
(Do) f(9) <0 from the above inequalities. Therefore, Theorem 5.2 can be
applied to conclude that all solutions of (5.3) are asymptotically constant.

THEOREM 5.3.  Assume that in the one-dimensional case, for uy=396—v, f
and a nonempty set H< (0, r), the following properties hold:

(1) v is nondecreasing and j odv<l;

(il) for any oe C and any ke {0} u {Yy € C:{ is constant, f(y)=0}
we have

max o(s)< gl Do implies f( + k) <0,

—r<s<0

min @(s) > [u™ "o Do implies f(¢ + k) 20;
0

—r<sg
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(i) if flo)=0 and either max_,.,co@(s)<|lp” oDy or
min _, <, <o ¢(s)> |u~"llo Do is satisfied, then ¢(~s)=ilu""lo Do for all
seH;

(iv) H={—pr*, —p,r* ., —p,r*}, where r*>0, 0<p < .- <
P S Hir*, p, is an integer for each i=1,..,m and the maximal common
factor (p] y vy pm) = 1’

(v) for each ¢>0, a, Be R and continuous function u: R — R such
that o <u(t) < B, te R, there is a natural number N so that

1 N
7 0 Sl ) <e
j=0
for all tye R.
Then any solution of (2.1) is asymptotically constant.

Proof. Assumption (ii) implies (A4%), so any solution of (2.1) is bounded
and any constant solution is stable by Lemma 3.2. Let ¢ e C. There i1s a
bounded solution y of (2.1) on R such that y,e Q(¢) for all 7e R. From
condition (i) it follows that u='=(6—v) '=8+v+vxv+., and u~'is
also nondecreasing on [0, oc). So

o= | du

From the equality
Yuts)=[" Dy duw) (5.4)

and the nondecreasing property of 4 ', one has that

sup Dy, < Dy, implies max y(t+s)< g, Dy,

s<t —r<s<0
and

inf Dy, = Dy, implies min y(z+s)= [|u" "o Dy,.
0

st —r<s<

Thus, by assumption (ii) with £=0, inf _, Dy, and sup,., Dy, are
constants, denoted by ¢, and ¢,, respectively. By using the diagonalization
procedure, as in the proof of Lemma 3.5, we can find a function z, which
is a solution (2.1) on R, such that z,€ (@), Dzy=c,, and ¢, < Dz, < ¢, for
te R. Then, we must have f(z4)=0 and max_,_,oz(s)<|lu o=
g~ Dz, Now, (iii) implies z(—s) = ||u~ | ¢, for all se H, From (5.4)
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and Oesupp u~' it follows that Dz _ =c, for all se H. Repeating the
above argument as in the proof of Lemma 3.5, we obtain that Dz__ =¢, for
all se H.

It is also true that inf,_, Dz, is a constant, denoted by c;. Clearly,
c; < c¢,. Applying the diagonalization procedure again, there is a function
v: R — R, which is a solution of (2.1) on R, such that ¢; < Dv,< ¢, for all
te R, Dvy=c, and there is t'€ [ —r, 0] such that Dv, =c,. In the same
way as above we conclude Dv,_,=c,, Dv_,=c, for all se H. There is a
natural number M (see [5,p.114]) such that {Mr* (M+1)r*,
(M +2) r*, ..} © H. Thus, there exist #*, t** € R such that r* < r** < r* +r,

DU,t_jrt=C3, thtw_jrt—C2 (J=0, l, 2, ...).

Assume ¢, < ¢,. By assumption (v) there is a natural number N such that

1
N+l

Z f((’l+1r‘)< (IER).

Then, from the equality

Cy—C3= DU,::_/,: - DU,._J-,.‘

- j k’ f(v.) ds

—f f(U:+(N e .) dt,

one gets

(N+1)c;—cy)= Z (c2—¢3)

v _Np* N

- f S [0 o)t
t* — Nr* [

j=

a contradiction. So, ¢,=c¢;. Then, by Lemma 5.1, v is constant. We
certainly have f(vy)=0 and v,e Q2{p). Thus, Lemma 3.1 gives that
x,(p)— vy as t — oo, and the proof is complete.

ExaMpLE 53. The scalar equation

%(x(t)——cx(t—r))= —h(x(1)) + h(x(t— 1)), (5.5)
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under the conditions 0<<c<1, r=0, h: R— R being strictly increasing,
satisfies the conditions of Theorem 5.3. Thus, solutions of (5.5) are
asymptotically constant. It should be mentioned that this result was
previously obtained in the case where ¢ =0 (see, cf. [1, 13, 15]).

We conclude this paper by emphasizing that measures of the delays in
the D operators and the right-hand side of the equations are assumed to
be the same throughout this paper. As will be indicated in a subsequent
paper, different measures of the delays can change the qualitative behavior
of solutions. For instance, the linear homogeneous equation

d
o [(x(t)—cx(t—r)]=—x(t}+ x(t 1)

possesses a non-constant periodic solution for certain constants ¢ and r.
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