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A pseudo monotone dynamical system is a dynamical system which preserves the 
order relation between initial points and equilibrium points. The purpose of this 
paper is to present some convergence, oscillation, and order stability criteria for 
pseudo monotone dynamical systems on function spaces for which each constant 
function is an equilibrium point. Some applications to neutral functional differential 
equations and semilinear parabolic partial differential equations with Neumann 
boundary condition are given. Q 1992 Academic Press, Inc 

1. INTRODUCTION 

Let R + = [0, co), R = ( - co, co), and R” denote the usual Euclidean 
space of dimension n. 

Let M be a compact topological space or a compact n-dimensional sub- 
manifold of R”, and let Co(M) := C”(M, R) denote the Banach space of all 
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continuous mappings U: M -+ R. On the function space C”(M, R) we 
consider the following usual partial ordering 

ub0ou(x)>,O on M. 

u > 0 means U(X) > 0 with u $ 0 on M, and u B 0 means inf,. .+, U(X) > 0. 
We will always assume that X is a subspace of Co(M) which has a 

topology making its inclusion into Co(M) continuous, so that X is a 
(partially) ordered function space with the ordering considered above. 

Throughout this paper, we will consider a dynamical system on a given 
subspace Xc C”(M, R), that is, a mapping 4 : Dam(d) c R+ x X-1 X 
satisfying the following continuity and determinism axioms. 

(1) Continuity : the domain Dam(d) is an open set in R+ x X 
containing (0) x X, and 4 is continuous. 

(2) Determinism: 4((u) = qS(t, U) is such that 4, : Dom(4,) + X is a 
mapping with Dom($,) open in X. do is the identity mapping on X. For all 
s, t>O, one has Dom(~,+,)=~;‘(Dom(~,)) and 4s+f=4sdr. 

Denote Dom(& ., u)) by [0, I,), the mapping from [0, 1,) to X defined 
by t + t$(t, U) is called the trujtctory of u and its image is the orbit y’(u). 
A subset Y G X is positively invariant if y + (u) E Y for all u E Y. For any u 
the o-limit set of y+(u) is ~(u)=r),~~~~,~~~Cl UtGcs,,,,yf(q5(t, u)), and thus 
y E O(U) if and only if y = lim, _ o. q5(tk, 24) for some sequence tk + 1, in 
[0, I,). A dynamical system is also called a semiflow if I, = co for any u E X. 

It is a well-known fact that I, = cc if the orbit y’(u) is precompact. In 
this case O(U) is a nonempty compact invariant connected set. The simplest 
case is when w(u) is a singleton. In this case, the orbit y+(u) (or the point 
U) is said to be convergent. A slightly more complicated case is the one 
when w(u) is a subset of the set of equilibrium points, that is, 

w(u)GE= {uEX;#(t,U)=Uforall t>O}. 

In this case, we say that the orbit y+(u) (or the point u) is quasiconvergent. 
A mapping f from X into itself is monotone if x b y implies f(x) 3 f(y), 

and strongly monotone if x > y implies f(x) $f( y). 
The semiflow 4 is monotone (respectively strongly monotone) if 4, is 

monotone (respectively strongly monotone) for all t > 0. 
4 is eventually strongly monotone if it is monotone and there exists a 

constant T > 0 such that 4, is strongly monotone for all t > T. 
A weaker concept than that of monotone semiflow and eventually 

strongly monotone semiflow is the following pseudo monotone semiflow 
and eventually strongly pseudo monotone semiflow. 

DEFINITION 2.1. The semiflow 4 is pseudo monotone if for any u E X and 
ee:E with use, we have &t, u)3e for all t>O. 
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The semiflow q5 is eventually strongly pseado montone if it is pseudo 
monotone and if there exists a constant T > 0 such that for any u E X and 
eEE with u>e, we have qS(T, u)$e. 

It is clear that each eventually strongly monotone semiflow is eventually 
strongly pseudo monotone. In Section 3, we provide an example of an 
eventually strongly pseudo monotone semiflow whose strong mononicity 
cannot be guaranteed (see Lemma 3.1). 

Strongly monotone dynamical systems on function spaces arise from 
various evolution equations. In [16, 171, Hirsch proved that a cooperative 
and irreducible ordinary differential equation generates a strongly 
monotone semiflow. According to Smith [24], a cooperative and 
irreducible retarded functional differential equation produces an eventually 
strongly monotone semiflow on Co(M) with M = C-h, 01, where h > 0 is 
a given constant. Also, see [22] for abstract functional differential equa- 
tions and reaction-diffusion systems with delay. For a similar result related 
to neutral functional differential equations on product spaces, we refer to 
[27]. Another class of strongly monotone semiflows is given by some semi- 
linear parabolic partial differential equations with second order uniformly 
strongly elliptic operators with Neumann or Dirichlet boundary conditions. 
The strong monotonicitiy is an immediate consequence of the well-known 
maximum principle. For details, we refer to Amann [l-3, 16, 19, 20, 231. 
By using the monotonicity and the positive semigroup theory, Hirsch [ 161, 
Matano [ 19,201, and Matano and Mimura [21] sketched the proof of the 
strong monotonicity of the semiflow generated by certain semilinear evolu- 
tion equations including some weakly coupled systems of parabolic partial 
differential equations where the reaction term is given by a cooperative 
vector field. Also, see [14] for related results. 

Recent research shows that for strongly monotone dynamical systems 
precompact orbits have a strong tendency to converge to the set of equi- 
librium points E. When this set is not connected, it often can be shown that 
a dense set of points has convergent orbits. 

There are numerous functional differential equations and partial differen- 
tial equations which arise in applications and seemingly lend themselves to 
this type of behavior, but which have not been investigated in the context 
of monotone flows. This is true particularly for equations for which each 
constant (function) in the phase space is an equilibrium point. 

Very little has been accomplished with respect to monotone dynamical 
systems defined, for instance, by the following functional differential 
equation of neutral type 

f [x(t)-cx(t-r)] =f(x(t),x(t-r)), 
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where c, r ER with Oft< 1, r>O, f: Rx R -+ R is continuous, locally 
Lipschitz in the first argument, increasing in the second argument, and 

t-(x, x) = 0 for any XER; 

or the following nonlinear parabolic partial differential equation with 
Neumann boundary condition 

$ = Au + g(x, 24, Vu), t>O,xEQ, 

4x, 0) = u(x), XEQ 

2 (x, t) = 0: XEx2, t>,O, 

where A is a second order uniformly strongly elliptic differential operator 
and g : fi x R x R” + R is smooth and satisfies 

g(4 c, 0) = 0 on fi for any constant c E R. 

For these systems, each constant function is a solution, the set of 
equilibrium points is connected, and therefore convergence to the set of 
equilibria says nothing about the asymptotic behavior of solutions except 
for boundedness. 

On the other hand, many papers are available dealing with the 
convergence of solutions of some special cases of the above neutral 
functional differential equation based mainly on monotonicity techniques 
(see, e.g., [4-6, 8, 261) or Liapunov-Razumikhin type invariance principle. 
For details, refer to a survey paper by Haddock [9] and recent papers by 
Haddock, Krisztin, Terjtki, and Wu [lo], and Haddock, Krisztin, and Wu 
Clll. 

Let us mention here that some special cases of systems satisfying the 
above conditions include the neutral functional differential equation 

f [x(t)-cx(t-r)]= -sinh[x(t)--(t-r)] 

which arises in the study of the motion of a classically radiating electron 
[18], and the Burgers equation in one space-variable 

u, + uu, = EU,,, E > 0, 

which arises in the study of gas dynamics and turbulence. 
In this paper, by taking the point of view of monotone dynamical 

systems, we present a unified treatment of asymptotic constancy of 
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solutions for neutral differential equations and some parabolic partial 
differential equations. In Section 2, we establish convergence, oscillation, 
and order stability results for eventually strongly pseudo monotone 
dynamical systems for which each constant function is an equilibrium point 
(Theorems 2.1-2.3). In Section 3, we apply our general results to various 
evolution equations (Theorems 3.1-3.2). Finally, we use an example from 
parabolic partial differential equation theory to show how our idea can be 
applied to some dynamical systems defined on noncompact manifolds 
(Theorem 3.3). 

2. CONVERGENCE, OSCILLATION, AND ORDER STABILITY 

In this section, we prove some general convergence, oscillation, and 
order stability theorems for eventually strongly pseudo monotone semi- 
flows. Throughout this section we make the following assumptions: 

(1) 4 is an eventually strongly pseudo monotone semiflow for some 
given T> 0. 

(2) Each constant function is an equilibrium point for the semiflow d. 

Since M is compact, by using the fact that every continuous real-valued 
function attains its maximum and minimum values at points in M, it is 
relatively easy to show (by contradiction for instance) that assumptions (1) 
and (2) imply that constant functions are the only equilibrium points for 
the semiflow 4. 

THEOREM 2.1 (Convergence Principle). Each precompact orbit tends to 
a constant function. 

Proof For each u E XE Co(M), one has m, < u(x) Q MO, x E M, where 
mo=minX6, U(X) > -co and MO = max,, M U(X) < a3. 

Let 

mk = .E$ hK U)(X) and Mk = yEa; WT, U)(X) 

for all k = 0, 1, . . . . Then ?+ik and fik are equilibrium points, where 
throughout this paper x -+ i is the inclusion mapping from R into X. 

By definition, one has tik < qS(kT, U) d A?,. Therefore by pseudo 
monotonicity one obtains 

that is, 

fik<&((k+ l)T, U)<@k 
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This implies that 

In this way, one obtains the following nested closed intervals 

. . . 
C[mk+,,Mk+,IE[mk,Mklc “‘~[m~~Mll~[mo~Mol 

Therefore lim, _ ~ mk = a and lim, _ 3. Mk = b exist. 
Let u E o(u), then we can find a sequence t, + co such that qb(t,, u) + u 

in X as n + co. Obviously, there exist a nonnegative integer sequence { p,} 
and a nonnegative real number sequence {q,,} such that t, = pn T + qn and 
q, E [0, T]. Owing to the compactness of [0, r] and the precompactness 
of the orbit, we may assume, without loss of generality, that lim n _ r*i qn = 
q E [0, T] and lim, _ o. &p,, T, U) = w E X. Then by the semigroup property 
and continuity of 4 we have #(q, w) = v. 

On the other hand, we can find y,, z, E M such that 

mp. = #(P, rT u)(Y,,) and M,n = $( in T, uNz,J. 

Without loss of generality, we may assume that y, --f y, E M and 
z, -+ z0 E A4 as n + co. Again by continuity of 4 and the fact that X is 
continuously imbedded into Co(M), we have w( y,) = a and w(zo) = b. 

Summarizing the above discussion, we can assert that for any u E o(u), 
there exist q E [0, T], w E w(u) such that v = #(q, w) and 

a = mEi; w(x) < max w(x) = b. 
xcM 

Recalling that 8,6 E E, one obtains ci < w < & and thus, by pseudo 
monotonicity one has d d v < d. Since u is an arbitrary element in o(u), we 
have that 

LidlId for any v E o(u). 

Let 0 be a given element in O(U) and W be associated with V as above. 
Then cj(q, W) = 17 and there exist jo, Z. E A4 such that 

W(j())=a and w(zo) = ho. 

By invariance of the limit set w(u), one can find an element 2 E O(U) such 
that W = d( T+ q, Z). Since 2 E o(u), we have Z 3 6. We want to show that 
actually Z = 6. 

For that purpose, suppose Z # h, then Z > 6, and thus by strong pseudo 
monotonicity, one has 

#(T,f)B&T,ci)=ri, 
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that is, 

c= inf 4(T, Z)(x)% a. 
x E h4 

Therefore by pseudo monotonicity one obtains 

which is a contradction to W( jO) = a. 
Thus, Z= ci on M, that is W = c$(T+ q, 4) = 4, and V= Ql(q, W) = 

#(q,>) = 6. Likewise,_ by using a similar argument, it is easily shown that 
V = 6. Hence V = ri = b. This completes the proof. 

Therefore, for any point u E X with precompact orbit y+(u) there exists 
a constant c = c(u) E R such that lim, _ m $(t, U) = C. Note that the constant 
c = c(u) is constructed in the proof of Theorem 2.1 as the unique limit of 
the sequences (mk) and (Mk). 

The following theorem shows that b(t, U) oscillates about E. 

THEOREM 2.2 (Oscillation Principle). Suppose u E X is a given point 
such that y+(u) is precompact. Let c = c(u) denote the unique limit 

u is not a constant function, then either there exists z > 0 

cj(t, u) = c for all t > T, 

or, for any t 3 0, there exist y, z E M such that 

d(t, U)(Y)>C and i(t, u)(z) < c. 

ProojY Obviously u =&O, u) # c since u is not a constant function. 
Therefore, for a given r 20, if $(t, u) = E, then necessarily r > 0, and 

t$(t, u) = 2 for all t > r by the semigroup property of the semiflow 4 and the 
assumption that each constant function is an equilibrium point. If 
#(r, U) # E, then it is impossible that d(t, u) >? (the proof for the case 
&r, u) < E is similar). Otherwise by strong pseudo monotonicity of 4 one 
has 4(r + T, u) $ C. Let inf,., #(r + T, u)(x) = c*, then E* S E, and 
d(r + T, u) 3 t*. Therefore, by pseudo monotonicity 

for all t 3 t + T. 

This contradicts the fact that lim, _ ~ f$( t, U) = t in CO(M)-topology also. 
The proof is complete. 

In the next section, we will show that for a strongly pseudo monotone 
dynamical system generated by a functional differential equation, the above 
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oscillation principle implies a very strong oscillation property for solutions 
(see Theorem 3.1). A similar remark is valid for parabolic partial differen- 
tial equation (see Theorems 3.2-3.3). 

The following result shows order stability of equilibrium points. Even 
though its proof is elementary, we will call it a theorem for sake of 
consistency. 

An equilibrium point P is order stable if for any E > 0 there exists a 6 > 0 
such that for all u~X with E-c?<u<~+~^ one has t-E^<&t, u)dE+E^ 
for all t > 0. 

THEOREM 2.3 (Order Stability Principle). Each constant function is 
order stable. 

Proof Let c E R be (arbitrarily) given. For every E > 0, choose 6 = E > 0. 
Then for all u E X with 

k&<E+& 

we have, by pseudo monotonicity and the fact that E - s^ E E and E + s^ E E, 

C-E^<qqt, u)dE+E^ for all t Z 0. 

This shows order stability of C! with 6 = E, and the proof is complete. 

Note that order stability is a very weak stability notion if X is a space 
of smooth functions. 

3. APPLICATIONS TO FUNCTIONAL 
AND PARTIAL DIFFERENTIAL EQUATIONS 

In this section, we apply our general convergence, oscillation, and order 
stability results to neutral functional differential equations and second 
order parabolic partial differential equations. For simplicity, we concen- 
trate on two systems. 

The first example is the following neutral functional differential equation 

% [x(t)-cx(t-r)]=f(x(t),x(t-r)) 

(which models active compartmental systems with pipes, the motion of a 
classically radiating electron, the spread of epidemics, population growth, 
and the growth of capital stocks [7, 8, 12, 13, IS]), where c, r are real 
numbers with 0 < c < 1, r 2 0, and .f: R2 -+ R is continuous, f is locally 
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Lipschitz in the first argument (see, e.g., [ 18, p. 541 for definition), f is 
increasing in the second argument, 

f(x, x) = 0 for XER, 

and f satisfies the following growth condition: for any bounded set 
WG R2, there exists a constant L = L(f, W) >O such that f(x, v) 2 
-L Ix--y1 for all x, YE W. 

Note that (3.1) reduces to a retarded functional differential equation for 
the special case c = 0. 

Obviously, the above general conditions are satisfied, in particular, by 
the neutral functional differential equation (see, e.g., [18]) 

z [x(t)-cx(t-r)]= -sinh[x(t)-x(1-r)]. 

The basic existence, boundedness, precompactness, and pseudo mono- 
tonicity results are stated and proved below. 

LEMMA 3.1. Let C= C([ -r, 0), R). Then 

(1) for any d E C there exists a unique solution, denoted by x( ., I$), of 
(3.1) through (0, 4). That is, there exists a unique continuous function 
x E C( [ -r, co), R) such that x0 = 4, x(t) - cx(t - r) is dtfferentiable and 
(3.1) holds for all t 20. 

(2) let P={(a,d)~Rxc;a=&O)-ccj-r)}. Then the solution 
of (3.1) generates an eventually strongly pseudo monotone semiflow 
u: [O, co) x P -+ P, defined by u(t, D(4), 4) = (D(x,(rj)), x,(d)), for which 
each orbit is precompact. Here D(4) = 4(O) - c#( -r), x, E C is defined by 
x,(s)=x(t+.~)foralls~[-r,O],andthepartialorderinginPisdefinedby 

(a,#)<(b,$)-=a<b and d(s)<+(s) for SE[-r,O]. 

Proof The local existence-uniqueness of solutions is guaranteed by the 
general theory of neutral equations with atomic D-operator at zero. For 
details, we refer to Hale [ 13, Chap. 121. By using a standard Liapunov- 
Razumikhin argument, like in [26], one obtains the inequality 

where 

44) d x(t, 4) d M(d) for all t 2 0, 

m(q5) = min 1 
4(0)-4-r) 

1 - c ’ S$%, . a(s)} 
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and 

M( 4) = max 
i 

4(O) - 4 - r) max 
l-c ‘st[-r,O] 

4(s) 
I . 

This implies boundedness of solutions. 
Since the D-operator is stable for 0 d c < 1, the precompactness of the 

orbit {x,(d); t 3 0} follows from the fact that boundedness implies precom- 
pactness of orbits for a neutral equation with stable D-operator (see, e.g., 
[ 133 ). Therefore Eq. (3.1) generates a dynamical system u : [0, cc ) x P + P 
on P, and each orbit of this semiflow is precompact. 

To prove the pseudo monotonicity, choose an element 4 E C and a 
constant eER. Let x(t)=x(t,4) and z(t)=x(t)-e. Then 

~o(z,)=i(x(t),x(t-I))=F(;il),z(t-r)), 

where F: R* -+ R is defined by 

F(x, y) =,/lx + e, y + e). 

Obviously F is continuous, locally Lipschitz in the first argument, 
increasing in the second argument, F(x, x) = 0 for x E R, and F satisfies the 
following growth condition: for any bounded set WE R2 there exists a 
constant L > 0 such that F(x, y) 2 -L Ix - yl for all x, y E W. 

Introducing the transformation 

one has 

w(t)=z(t)-cz(t-r): 

CUrI 
z(t)=w(t)+ 1 c’w(t--jr)+c 

j=l 
[~~~l+~z(t-([~]+l)r) 

and 
Cl/r1 

z(t-r)= c ci-- lW(t-jr) + CCUrl 

,=I 
z(t-([i]+l)r), 

where [t/r] is the greatest integer less than or equal to t/r. 
Therefore w(t) is a solution to the following retarded equation 

CUrI 
ti(t)=F w(t)+ c ciw(t-jr)+c 

,=l 
[rirl+lz(t-([S]+*)r), 

[ r/r1 
c cl-1 w( t -jr) + cC’lr’ 
,= I z(t-([i]+l)r)] 

for all t 3 0. 
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Let 

where 

v(t) = rnin{“Tj; f w(s), m}, 
. . 

m=min(~fn~~O(l-c)[fj(s)-e],D~-(l-c)e}. 
. . 

If w(t) > u(t), then evidently D ‘u(t) = 0. Here D + stands for the Dini 
derivative. 

If w(t) = u(t), then 

D'v(t) >min{O, S(t)} 

and 

min{ pz’Bn,o (1 - c)CdW - el, w(s)) k w(f) . . 

for all O<s< t. 
Hence, it follows that 

Crlrl 
1 c~-‘(1-C)W(t--j~)+C~“~‘(l-C)Z t- 

j= 1 ( Kl+N 

CUrI 
2 C ciP’w(t)(l -c)+c~“‘~ min (1 -c)[d(s)-e] 

j=1 -r<s$O 

2 (1 - c[“r’) w(t) + P’bv( t) = w(t), 

that is, 

Cl/r1 

w(t)+ 1 c’w(t-jr)+c 
j= 1 

“irl+lz(*-([f]+l)r) 

Cl/r1 
< 1 ciplw(t-jr)+c 

j=l 

[f-rlz(t-([~]+l)r). 

By monotonicity of F, this implies that G(t)>O, so that D+v(t) 20. 
In any case, one has D'u(t) 2 0. Consequently, u(t) 2 u(0) = m which 

implies that w(t) > m, that is, 

D(x, - ;) 2 min{ ~r<s<O (1 -c)C~(s)-el,D(~)-D(~)}. min (3.2) . . 

Therefore, D(x,) 2 D(t) provided $ Z 4 and D($) Z D(4). 
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To prove the inequality x, >/ .%? for all t > 0, we first claim that 

inf x(t)>0 provided inf [x(t) - cx( t - r)] > 0 
IE c0.v tE CO.Tl 

for any continuous function x : [ -r, T] --f R ( T > 0) with x0 2 0. 
Indeed it is clear that if there exists a first r 3 0 for which x(r) = 0, then 

x(z) - cx(r - r) = - cx(r - r) d 0 leads to a contradiction. 
Now for the initial function 4 given above, define 4, EC by d,,,(s) = 

4(s) + l/m for all s E [r, 01, where m is any positive integer. Then 

l-c 
min (l-c)[d,(s)-e]>-- >o 
r<.y<O m 

and 

Do,)-D@)=D(i)-D(P)+(l-c)$O. 

According to (3.2) one obtains 

0(x7-C)>O (3.3) 

for all t b 0, where x7 is the solution of (3.1) through (0, 4,). So, by the 
above claim, one has the inequality 

for all t > 0. Hence, by continuous dependence of solutions on initial 
functions, one obtains x, > 6 for all t 2 0. This completes the proof about 
the pseudo monotonicity of the semiflow { (Dx~, x,)),~~ on the product 
space P. 

To prove strong pseudo monotonicity, we choose 4 E C and e E R such 
that d>t?, D(4) >D(e), and either D(4) >D(C) or there exists a 
B. E [ - r, 0] such that d(0,) > e. Let x(t) = x( t, 4) and z(t) = x(t) - e. Then 
one has z(t) > 0 and z(t) - cz( t - r) > 0 for all t > 0. 

If there exists a 8, E C-r, 0] such that 

and 
de01 > e (that is, ~(0,) > 0) 

z(t)-cz(t-r)=O at t=e,+r, 

then at this point, one has 

i [z(t)-cz(t-r)] =F(z(t), z(t-r)) 

= F(cz(t - r), z(t - r)) > 0. 

505: 100/2-8 
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This shows that, in any case, one can always find a z E [0, r] such that 

z(7) - cz(7 - Y) > 0. 

For any given constant Ma r, let L be the growth condition constant of 
F(x, y) on the bounded set W= {(x, y) E R2; 1x1, 1 yj <IV}, where 

N= ,Ey;o, Cle + Ix(t)ll. 

Then 

-$ [z(t)-cz(t-r)]=F(z(t),z(t-r)) 

2 F@(t), cz(t - r)) 

3 -L[z(t)-cz(t-r)] 

for all t E [z, M]. 
This implies that 

z(t) - cz(t - r) 2 epL(‘+‘)[z(z) - cz(z - r)] > 0 

for all t E [z, M]. Once more, by the above claim, one obtains z(t) > 0 for 
all t E [r, M]. A4 is any constant chosen in a way such that it is not less 
than r. 

Therefore the semiflow { (Dxt, x,)},,~ is eventually strongly pseudo 
monotone with at least T = r. The proof is complete. 

By using our general convergence, oscillation, and order stability 
principles, we obtain the following result for Eq. (3.1). 

THEOREM 3.1. (1) Each constant function is stable. 

(2) For each 4 E C, the solution of (3.1) through (0, 4) has a finite 
limit s(d) which is a constant function on C-r, 01. 

(3) If q5 E C is not a constant function, then x(t, 4) approaches s(4) in 
the following strongly oscillatory manner: Let I be any interval in [ -r, 00) 
with length greater than r, then there exist t,, t, E I such that 

x(t,, 4)244) and x(t2,4) d s(4). 

Furthermore, if there exists t, E Z such that x( t, ,d) > s(4), then there 
exists t, E Z such that x(t,, 4) <s(4). (Th e role oft, and t, may be reversed.) 

Remark 3.1. Strictly, speaking, the space P is not a space of the type 
C”(M) considered in Section 2, and so we cannot directly apply 
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Theorems 2.1-2.3 to the neutral equation (3.1). The space P can be 
considered to be a subset of Co(M) where A4 = [ -Y, 0] u { 1) and, for 
Q E Co(M), 4* = 4 on C-Y, 0] and 4*( 1) =4(O) - cd( -r). Furthermore, we 
can make a slight modification in the proof of Theorem 2.1 as follows. 

Replace 

m, d u(x) d MO, XEM 

where 

and 

M, = max 
{ 

b(O) - c@( -I) max 
l-c ‘scr-r.01 

4(s) 
1 ’ 

and do the same thing for mk and M,. 
With this modification, the argument in the proof of Theorem 2.1 still 

applies to the neutral equation (3.1). 
To provide one more example, we consider a semilinear second order 

parabolic partial differential equation. 
Let Q be the interior of a smooth closed bounded n-dimensional 

submanifold Q _c R” with boundary %2. Consider the following semilinear 
parabolic initial-boundary value problem with Neumann boundary 
condition. 

g = Au +f(x, u, Vu), t>o, XEf& 

au 
q=o> 

4-7 0) = u(x), 

xEaa, t30, (3.4b) 

XEQ, (3.4c) 

where A is a second order uniformly strongly elliptic differential operator 
of the form 

A= i a,(x)D;D,+ i b,(x)D,, 
i,j=l k=l 

(3.5) 
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Dj= a/ax,, aii= a,,, b,: D + R are smooth, f: fi x R x R” -+ R is locally 
Lipschitz such that f~ C1+a(Q x R x R”) with 0 <a < 1, Vu = (D,u, . . . . D,u) 
is the spatial gradient, ‘1: X2-R” is a smooth outward pointing nowhere 
tangent vector field on X2. 

We assume that 

f(x, c, 0) = 0 onfi 

for any given CE R, so that each constant function is a solution to 
(3.4at(3.4b). 

Note that, without loss of generality, one may incorporate lower order 
terms of (3.5) into the nonlinearity f in order to reduce A to a linear 
symmetric operator, if necessary. 

Obviously, the above general conditons are satisfied, in particular, by the 
Burgers equation in one space-variable 

u, + uu, = EU,, > & > 0. 

A solution flow for (3.4) is a dynamical system (4, X), where X is a space 
of real valued functions on Q, such that for each u E X, a solution to 
Eqs. (3.4a )( 3.4c) is obtained by 

4x7 t) = (#r)(x). 

Let CL(a) denote the Banach subspace of C’(!S)-functions o such that 

g (x) = 0, xEa52. 

Let X be a linear subspace of CL(w) with a topology that makes the 
inclusion XG CL(a) continuous. Then X is an ordered space with function 
ordering. According to [ 15, Theorem 4.31 the dynamical system (4, X) is 
strongly monotone and compact. Bounded solutions to Eq. (3.4) are 
defined for all t 3 0. 

To ensure precompactness of bounded orbits for Eq. (3.4), we suppose 
that there exists a function d : R + + R + such that 

I.& 4 w)l d 4P)(l + l4*) 

for every p 2 0 and (x, U, w) E J? x C--p, p] x R”. This is the so called 
Nagumo type growth condition in the spatial gradient. This condition and 
imbeddings imply boundedness of the (partial) derivatives of the solution 
to (3.4a)(3.4c) if the solution itself is bounded (see, e.g., [ 11). 

Boundedness of the solution to (3.4a)-(3.4c) follows from the method of 
upper and lower solutions, where the upper and lower bounds are respec- 
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tively given by the maximum and minimum values of the initial condition 
u in (3.4~). (See, e.g., [l, Sect. 21 and Refs. therein.) 

Therefore, by our general convergence and oscillation theorems, one has 
the following result. 

THEOREM 3.2. Let o E C*+“(Q) he such that 

$(x)=0, xEasz. 

Then the solution u(x, t) of (3.4a)-(3.4c) converges to a constant function as 
t -+ 00, that is, there exists a constant c = c(u) E R such that lim, _ o. u(x, t) = c 
uniformly on 6. 

Furthermore, if v is not a constant function, then for any t > 0 there exist 
y, z~d such that 

4Y, t)>c and u(z, t) < c. 

The oscillation part follows from Theorem 2.2 and a contradiction 
argument which uses backwards uniqueness for the initial-boundary value 
problem for parabolic partial differential Eqs. (3.4a)-(3.4b), where the 
associated initial condition would be considered at the first time z > 0 such 
that u(x, z) = c for all XE 0, if it is assumed that such a z exists from 
Theorem 2.2 (see, e.g., [25, pp. 167-1701 and Refs. therein.) 

Our general convergence principle cannot be applied to the case when A4 
is not compact (for instance A4 = R”) since the proof of Theorem 2.1 
requires the compactness of the considered space M so that the supremum 
and infimum of a function u E Co(M) can be attained at points in M, and 
each sequence in M has a convergent subsequence. However, the idea 
included in the argument of the proof of that theorem can also be adapted 
for general cases. 

To show this, we consider the convergence problem for solutions of a 
parabolic partial differential equation defined on R”. We follow [ 15, 
Sect. 51 for notations and preliminary results. We consider a strongly 
monotone semiflow in spaces of almost periodic functions. 

Denote by UC’(R”) the Banach space of Cl-mappings u : R” + R such 
that u and its first partial derivatives are bounded and uniformly 
continuous with the usual Cl-norm denoted by 11.1) r. Obviously, UC’(R”) 
is ordered with pointwise ordering. We define u B 0 if and only if there 
exists a c E R such that u(x) > c > 0 for all x E R”. The subspace of almost 
periodic Cl-functions 

AP’(R”) c UC’(R”) 
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is the set of those u : R” + R whose orbit under the group of translations 
G of R” has compact closure in UC’(R”). 

Now, consider a second order parabolic initial value problem 

au z = Au +f(x, u, Vu), t>o,x~R”, (3.6a) 

4-5 0) = u(x), x E R”, (3.6b) 

where v E UC’, 

A= i aq(x)DjDi+ i b,(x)D, 
i,j= I k=l 

and 

f:R”xRxR”+R 

satisfy the following conditions. 

(1) The coefficients au= a,,, bi: R” + R are in UC2(R”) and their 
partial derivatives satisfy a uniform Holder condition for some exponent in 
the range O<a< 1. 

(2) There is a constant CER such that 

det[aV] 3 c > 0, XER” 

and 

(4x)5,5> >c(5,4>, x, {ER” 

where a(x) = [ati (x)] and (., .) is the usual inner product. 
(3) The mapping f is locally Lipschitz and f is locally of class C’ + OL. 

Under the above conditions, Mora [23] proved that the initial value 
problem (3.6) has a monotone solution flow in UC’(R”). 

In addition to (l)-(3), suppose 
(4) there is a closed subgroup (of translations of R”) Hc G with 

compact quotient G/H, such that the coefficients of A are invariant under 
composition with elements of H, and also 

f(x, Y, O=f(h .YY 5) 

for all (x, y, <) E R” x R x R”, h E H. 

Hirsch [ 15, Theorem 5.41 proved that the solution flow to (3.6) leaves 
AP’(R”) invariant and restricts to a strongly monotone flow in AP’(R”), 
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that is, restricted to AP’(R”), the solution flow defines a strongly 
monotone dynamical system. 

As above we assume that 

f(x, Y, 0) = 0 for (x, y)eR”xR 

so that each constant function is a solution to Eq. (3.6a). 
Once more, by using the characterization of supremum and infimum, the 

strong monotonicity of the semiflow on AP’(R”), and the fact that each 
constant function is an equilibrium point for the semiflow, it is relatively 
easy to show (by contradiction for instance) that constant functions are the 
only equilibrium points for the semiflow. 

Even though Theorem 2.1 cannot be directly applied to this case because 
of the noncompactness of R”. We modify the method contained in the 
proof of that theorem as follows. 

For any v eAP’(R”), x E R”, and t E R, let q5(t, u)(x) = u(t, v)(x), where 
u( ., u) is the solution of Eq. (3.6). Suppose { $t}t30 is a precompact orbit. 
Let 

m(t) = inf &t, v)(x) and M(t) = SUP fat, v)(x). 
xsR” XER” 

Then by monotonicity of 4, m(t) is nondecreasing and M(t) is non- 
increasing, and 

Therefore 

inf u(x) d m(t) < M(t) 6 sup v(x). 
xsR” XER” 

lim m(t)=u and lim M(t) = b exist. 
I-n; t-t5 

For any $ em(a), we can find a sequence tk --+ co such that 
#(tk, v)(x) -+ $(x) in UC’(R”)-topology. Hence, 

a<$(x)<b for all x E R”. 

Evidently w(u) &AP’(R”) since G acts isometrically on UC’(R”), and 
thus AP’(R”) is closed in UC’(R”). 

By the invariance property of o(u) there exists v EW(U) such that 
II/ = 4( 1, v). If $(x) #a on R”, then v #a on R”, and thus v > a. 

By strong monotonicity 

$=4(1, v)>>8, 
that is 

Il/(x)2u+c 

for all x E R”, where c > 0 is a constant. 
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On the other hand, lim, _ o. inf,, Rn &tk, u)(x) = a uniformly on R”. 
Therefore there exists a sequence {xk) in R” such that 

lim d(tk, II) = a. 
k-cc 

This is a contradiction to the fact that lim,,, d(tk, u)(x) = $(x) in 
UC’( R”)-topology and inf, t R” 1,9(x) > a. Therefore I/I(X) = a on R”; that is, 
lim , _ oD &I, u)(x) = a uniformly on R”. By using a similar argument, it is 
easily shown that e(x) = b on R”. The proof is complete. 

Likewise, the argument in the proof of Theorem 2.2 can be accordingly 
modified. Thus, we have proved the following result. 

THEOREM 3.3. Let UE AP’(R”) be such that u has a precompact orbit. 
Then the solution u(x, t) of (3.6a)-(3.6b) converges to a constant function 
as t -+ 00, that is, there exists c E R such that lim,, oD u(x, t) = c uniformly 
on R”. 

Furthermore, if v is not a constant function, then for any t b 0 there exist 
y, z E R” such that 

U(Y, t)>c and u(z, t) < c. 
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