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A TOPOLOGICAL TRANSVERSALITY THEOREM 
FOR MULTI-VALUED MAPS IN LOCALLY CONVEX SPACES 

WITH APPLICATIONS TO NEUTRAL EQUATIONS 

TOMASZ KACZYNSKI AND JIANHONG WU 

ABSTRACT. The concept of essential map and topological transversality due to A. 
Granas is extended to multi-valued maps in locally convex spaces and it is next ap
plied to prove the solvability of boundary value problems for certain neutral functional 
differential equations. In order to achieve a required compactness property, the weak 
topology in a Sobolev space is considered. The topological tool established in the first 
part of the paper allows to avoid some obstacles which are encountered when trying to 
use standard degree-theoretical arguments. 

1. Introduction. The motivation of this paper is to develop a topological tool to 
investigate the following two-point boundary value problem of neutral functional differ
ential equations 

f x(t) ef(t,xt,xt,xt)9 a.e. t G [0,71, 
(1.1) {xo = <p 

[x(T) = b 

where r > 0, T > 0, b G Rn, <p G W2 '2([-r,0]; R»),/ : [0,71 x L°°([-r,0]; Rn) x 
L°°([-r,0]; Rn) x L2([-r,0]; Rn) —• Rn is a multi-valued map with nonempty closed 
convex values, and for any JC: [—r, 71 —• Rn, xt, 0 < t < T, denotes the map from [—r, 0] 
to Rn defined by xt0) = x(t+s) for s G [—r, 0]. As will be shown, the problem (1.1) can be 
formulated as a fixed point problem for a certain u.s.c. map with nonempty compact con
vex values F:U —* C, where C is a closed convex bounded subset of ( W2>2([0,71; R"), J) 
(the Sobolev space with the weak topology) and U is an open subset of C The choice of 
the Sobolev space and its weak topology, motivated by the study in [1] and [7] for Cauchy 
initial value problems of neutral equations, enables us to consider boundary value prob
lems of neutral equations whose right hand side functional may not be continuous. The 
fact that the space (VK2,2([0,71; Rn), u?) is non-metrizable and the bounded set U is not 
weakly open in the entire space makes it difficult to apply the topological degree theory 
in [6], [8] and [11]. This inspires us to extend the topological transversality theorem due 
to A. Granas to the case of convex-valued maps in a locally convex space. 
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The rest of this paper is organized as follows. In Section 2, we introduce the con
cept of essential maps and prove a topological transversality theorem for compact u. s. c. 
multi-valued maps with nonempty compact convex values in a Hausdorff locally con
vex space. We then, in Section 3, show that the problem (1.1) can be reformulated as a 
fixed point problem for a multi-valued map satisfying certain monotonicity properties. 
The established results are then applied in Section 5 to obtain an existence result for the 
problem under an "a priori bound" condition. Finally, we present a simple example to 
illustrate the main result. 

2. Topological transversality. In this section, we extend concepts of essential 
maps and topological transversality, due to A. Granas, to the case of convex-valued maps 
in locally convex spaces. For elementary properties of these maps, we refer to [6]. 

In what follows, E is a Hausdorff locally convex space and C is a closed convex subset 
of E. Given a pair of closed subsets A Ç X of C, we dentoe by %(X, C) the class of all 
compact u. s. c. maps F:X^> C, with nonempty compact convex values, which are fixed 
point free on A, i.e., x £ F(x) for all x G A. 

A map F G %(X, C) is called essential if every G G %(X, C) such that G\A = F\A 

has a fixed point. Two maps F, G G 9Q(X,Q are called homotopic if there exists an 
u.s.c. compact map / / : X x [ 0 , l ] ^ C , with non-empty compact convex values, such 
that Ht : = //(•, t) G %(X, C) for all t G [0,1], H0 = F and H{ = G. We call such H a 
homotopy from F to G. Evidently, the relation "F is homotopic to G" is an equivalence 
relation. 

LEMMA 2.1. Let F G %(X, C). The following statements are equivalent: 
(i) F is inessential (i.e., F is not essential); 

(ii) F is homotopic to a fixed point free G in %(X, C); 

(Hi) F is homotopic to a fixed point free G* in %(X, C) by a homotopy keeping F\A 

pointwise fixed. 

PROOF, (i) => (ii). Let G G %(X, C) be a fixed point free map with F\A = G\A. It is 
easily verified that H(x, t) — (1 — t)F(x) + tG(x) is the required homotopy from F to G. 

(ii) => (iii). Let H be a homotopy from a fixed point free map G = Ho to F = H\. Let 
B = {(JC,0 GXx[0,l];;ceiJ(jc,0}andletfl= {* G X; JC G //(JC, t) for some r G [0,1]}. 
From the compactness of H it follows that B is compact, therefore B is compact as the 
projection of B onto the X coordinate. We may assume that B ^ 0, otherwise F is fixed 
point free and we are done. Clearly, A HB — 0. Since any Hausdorff locally convex space 
is a F3i space, there exists a continuous function u: X —•> [0,1] with u(A) = 1, u(B) = 0. 
We define G*(JC) = //(JC, II(JC)) and//*(x, 0 = //(JC, (1 -0+fw(jc)). It can be easily verified 
that G* is fixed point free and H* is a homotopy from F to G* with //*(x, 0 = F(JC) for 
all x G A and all t G [0,1]. 

The statement (iii) => (i) is obvious. 
As an immediate consequence we get the following 
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COROLLARY 2.1. Let F, G G 9Q(X,C) be homotopic maps. Then F is essential if 
and only if G is essential. 

THEOREM 2.1. Let U be an open subset ofC, xo G U, and let dU = dcU be the 
boundary ofUin C. Then the constant map 0 —> {xo} is essential in 9^y(U, C). 

PROOF. We want to show that if F G 9§u(Û, Q and F\du = {JC0}, then Fhas a fixed 
point in U. We define the extension of F to F: C —• C by putting F(x) = F(x) if x G Û 
and F(x) = {xo} if x G C\Ù. Then F is u. s. c. and by the Ky-Fan fixed point theorem 
there exists x G C such that x G F(x). Since no JC in C\U is fixed, JC must be a fixed point 
ofF. 

THEOREM 2.2. Let U be an open subset of C with x0 G U, and let F.Û —• C be 
an u.s. c. compact map, with nonempty compact convex values, such that x ^ XF(x) + 
(1 — X)xoforallx G dcU and all 0 < A < 1. Then F has a fixed point in Û. 

PROOF. We may assume that F\du is fixed point free, otherwise, we are done. By 
the hypothesis, H(x, t) = tF(x) + (1 — t)xo is a homotopy from the constant map {JCO}, 

which is essential by Theorem 2.1, to the map F in %du(U, Q. Therefore F is essential 
by Corollary 2.1 and, consequently, has a fixed point. 

3. Application to neutral equations: technical lemmas. In what follows, r > 0, 
T > 0, and (p G W2,2([—r, 0]; Rn) are given. We introduce the following spaces: 

Ei = C([0,71; r ) x C([0, 71; Rn) x L2([0, 71; IT), 

£2 = L°°([-r, 7]; Rn) x L°°([-r, 71; Rn) x L2([-r, 71; RB), 

£3 = L°°([-r,0]; IT) x L°°([-r,0]; Rn) x L2([-r,0]; R"). 

We then define the extension operator 0: £i —• £2 by 

'(<p,<p,<p)(f) i f - r < f < 0 , 
V̂ (W, v, w)(0 = Wni.ihv-Mit) - ! (Mf Vf w ) ( 0 if o < t < T 

For any map z: [—r, T] —> lRn and / G [0,71, z, denotes a map from [—r, 0] to Rn defined 
by zt(0) — z(t+6) for — r < 6 < 0. It is easy to see that 0: E\ —• £2 is continuous, that for 
any f G [0,71, the map from E\ to £3 defined by (w, v, w)0) = (C0iw),, 002 v)r, OfonOr) 
is continuous, and that the first two coordinates ($\u)u {^2v\ are piecewise continuous 
functions. 

We consider the following boundary value problem 

f x(t) ef(t,xt9xt,xt)9 a.e. t G [0,71, 
( } \xo = (p,x(T) = b, 

where b G Rn,/: [0,71 x E3 —> R" is a multifunction. Define g: [0,71 x £1 —• Rn by 

g(f, 11, v, w) = /(f, (0i w),, (02 v),, 003 nOr). 
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Then we can rewrite (3.1) as 

n 2 f x(t) G g(t,x,x,x) a.e. t G [0,71, 

We assume that the problem (3.2) can be imbedded in the following family of prob
lems 

n . f *(0 G A(A, f, x,x,x), a.e r G [0,71, 

where À G [0,1], /i: [0,1] x [0,71 x E\ —> lRn is a multifunction, with nonempty closed 
convex values, satisfying the following conditions: 

(HI) ft(l,r,w,v,w) = g(f, w, v, w) for (f, w, v, w) G [0,7] x £i; 
(H2) /i(-, f, •): [0,1] x £i —• W is w. s. c. for a.e. r G [0,7]; 
(H3) /z(A,-,w,v,w): [0,71 —> Rn has measurable single-valued selections for any 

(A,w,v,w)G[0, l ]x£ i ; 

(H4) for any bounded B Ç E\ there exists aB G L2([0,71; [0,oo)) such that 
|/i(A, f, w, v, w)| < afl(0 for a.e. t G [0,71 and all (A, w, v, w) G [0,1] x B. 

We define the multi-valued map G: [0,1] x Ex -+ L2([0,71; W1) by 

(3.4) G(A, w, v, w) = {JC G L2([0,71; AT); jc(r) G /i(A, r, w, v, w) for a.e. r G [0,71}. 

The above conditions on h imply that G is well defined with nonempty convex values 
and it sends bounded sets to bounded sets. Moreover, employing a similar argument to 
that in [10], we obtain the following 

LEMMA 3.1. The graph of G is closed in the product of norm topology on the domain 
and the weak topology on the codomain. 

PROOF. Suppose that (An, w„, v„, vv„) —-> (A, w, v, w) in norm, xn —̂  x (weakly) and 
xn G G(An, wn, v„, vv„). By the Mazur theorem, for any N = 1,2,..., 

x eCN := c0{*tf+i,*#+2,...} 

and consequently, there exists a sequence {z^,z^,...} Ç CN strongly convergent to x. 
Since the L2 convergence on a bounded interval implies the pointwise almost everywhere 
convergence of a subsequence, we may assume without loss of generality that z%(t) —> 
x(t) as k —• oo for a.e. t G [0,71 and all N. Let A Ç [0,71 be the set of those t for 
which the above sequence converges and for which /z(-, t, •) is u. s. c. Then the Lebesgue 
measure of A is T. By the definition of an u. s. c. map, for any t G A, e > 0, there exists 
N such that 

xk(t) e D£ : = h(X, t, u, v, w) + #£ 

for all k > N, where B£ is the closed e-ball about the origin. Since D£ is closed and 
convex, {z^} Ç D£ and so x(0 G De. This holds for all e > 0 and a.e. f G [0,71, hence 
x G G(A, w, v, w) and the conclusion follows. 
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In order to obtain a further closedness property of the graph of G, we consider the 
space L2 := L2([0,T\\ R2) with the standard integral inner product, and pose the follow
ing additional condition on h: 

(H5) There exists a continuous linear automorphism S of L2 and a constant a ^ 0 
such that the map G(A, «, v, w) = Sw + aG(A, «, v, w) is monotone with respect to 
w G L2 for all (A, u9 v) G [0,1] x C([0, 71; /?") x C([0, 71; Rn). 

Here and in what follows, a multi-valued map F: H - • //, where (//,(•,)) is a Hilbert 
space, is called monotone if(x — x,y — y) > 0 for all JC, JC G //, y G F(JC) and y G F(Jc). 

Let us note that (H5) is satisfied, for example, if either ±G is monotone in w or G is 
Lipschitzian in w with a Lipschitzian constant K independent of A, M and v. Indeed, in 
the second case, we may take G(A, w, v, w) = w — ^G(A, w, v, w). 

LEMMA 3.2. Let G be defined in (3.4) and satisfy (H5). Then the graph of G is 
closed in the following topology on [0,1] x E\ and L2: norm topology on [0,1] and the 
first two L°° components ofE\, weak topology on the last I? component ofE\ and on the 
codomain L2. 

PROOF. We first assume that G itself is monotone. Our argument will be similar to 
that in [5]. Let x^ G G(A ,̂ uk, v*, wk) for k = 1,2,..., (A*, w*, v*) —> (A, w, v) in norm, 
Wk-^ w,Xk —*x weakly as k —> oo. We want to show that x G G(A, w, v, w). Suppose the 
contrary. Since G(A, w, v, w) is convex and closed, the Hahn-Banach separation theorem 
implies the existence of y G L2 and a real a such that 

(y,x) < a < (y,z) for z G G(A, w, v, w). 

Let ym = w — tmy, where tm > 0, tm —+ 0 as m —• oo, and choose zĵ  G G(A*, w*, V£,yw) 
for any £ and m. Since any bounded set in L2 is weakly relatively compact, there are 
subsequences z% —' f1 G L2 as p —• oo. Also, by passing to a subsequence, we may 
assume that z"1 —* z G L2 as m —• oo. Since (A*, w*, v*, yw) —> (A, «, v,yw) in norm and 
ym —* w, it follows from Lemma 3.1 that zm G G(A, w, v, ym) and z G G(A, w, V, W). By the 
monotonicity assumption, (JC* — zj", w* — w + fmy) > 0 for all & and m. Since w* -^ w 
and z^ —x f1 as /? —> oo, we get 

0 < Jiin (xk -$B,Wkp-w + tmy) = Jim. (xXp - z"\ tmy) for all m. 
/?—KX) P />—>00 

Next, rm > 0 implies 
0<Jim_6t* - z " \ y ) for all m. 

p^oo p 

By passing to the limit as z™ —' z and as JC* —̂  JC, we get 

0 < Um_ lim (xk - A y ) = Jim_ (** - z,y) = (x - z,y). 
p—>oo m—>oo p—KX> 

This implies (jc,y) > (z, y) which contradicts the choice of y and a. 
Let now G be monotone. The equation defining G can be rewritten as G(A, w, v, w) = 

-G(A,w, v,w) — -Sw. Since any continuous linear operator is weakly continuous, the 
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graph of G is closed in any one of the considered topologies if and only if the graph of 
G has that property, and hence the conclusion follows from the first part of the proof. 

Now, let e > 0 be a given sufficiently small constant. We define G: [0,1] x W2,2 —» 
L2 xRn x Rn by the formula 

G(A, u) = {G(A, w, w, u) - su} x {(f(0)} x {b}, 

where W2'2 := W2'2([0,7]; Rn). 

LEMMA 3.3. Under the assumptions (HI - H5), the restriction of G to any bounded 
subset of [0,1] x W2,2 is u. s. c. and compact in the weak topology on the domain and 
codomain spaces. 

PROOF. G maps any bounded subset of [0,1] x W2,2 to a bounded, therefore weakly 
relatively compact, set in L2 x Rn x Rn. The conclusion will follow if we show that 
the graph of G is closed in the following topology: standard norm topology on [0,1] 
(identical with the weak topology) and weak topology on W2,2 and L2 x Rn x Rn. Let 
A* G [0,1], uk G W2'2, (vk,uk(0)9uk(T)) G G(\k,uk), k= 1,2,..., A* -> A, uk — K, 
(v*, Wjt(O), Mfc(F)) —̂  (v, x, y) as & —• oo. We want to show that (v, JC, y) G G(A, w). Indeed, 
since the inclusion W2,2 Ç Cl([0, T}\ Rk), is completely continuous, we may assume, by 
passing to a subsequence, that uk —> u and uk —• u in the norm topology. Evidently, 
wjfc(O) —• w(0) and Wjt(r) —• w(r), so only the convergence un -^ u and vn —̂  v is weak. 
The conclusion now follows from Lemma 3.2. 

4. Application to neutral equations: existence results. We let L\ W2-2 —• L2 x 
Rn x Rn be defined by Lu= (w - en, w(0), «(7)), and G: [0,1] x W22 - ^ L 2 x r x R f l 

be the multivalued map defined in the previous section. It is easily seen that L is an 
isomorphism, the problem (3.1) is equivalent to Lu G G(l,w) and, consequently, to 
u G F(w), where F = L~l o G(l, w): W2'2 —• W2'2. 

We assume that the following "a priori" boundedness conditions hold. 
(H6) There exist Mo, Mi > 0 such that, for any u G W2,2 satisfying either Lu G G(A,w) 

OT Lu G AG(0,w), 0 < A < 1, we have ||w||oo < M0 and ||w||oo < M\. 
(H7) ThereexistconstantsM>OandfcG [0, l)suchthat||/z(A,w,v,w)\\2 < M+k\\w\\2 

forall(A,w,v,n>) G [0,1] x E\ with \\u\loo < M0 and Hv^ <M{. 
In the above statement, || • ||oo stands for the essential supremum norm and || • ||2 stands 
for the integral L2 norm. 

THEOREM 4.1. Under the conditions (HI - H7), the problem (3.1) has at least one 
solution u G W2,2 with ||w||oo < Mo, ||w||oo < M\ and \\u — eu\\2 < M2, where M2 : = 
[M+y/?e(l+k)M0]/(l-k). 

PROOF. We will use the topological transversality theorem in the locally convex 
space E = (W2,2, w)), where u is the weak topology. 

Put 
U={ue W2'2; HiiHoo < M0, HMHOO < Mu \\u - eu\\2 < M2}. 

file:////u/loo
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ThenL~loG([0, l]xU) is bounded and, since the inclusion W2'2 Ç C1 . - Cl([0, l];IRn), 
is completely continuous, there are constants No > Mo and N\ > M\ such that ||v||oo < 
N0 and || viloo < Nx for all v e L'1 o G([0,1] x V). 

If v G L~x o G([0,1] x Z7), then there exists u G Z7 such that 

v(0 — £v(0 G /*(A, t,u,ù,iï) — su(t). 

From (H7) and the definition of U and noting that ||w||2 < y^lMloo it follows that 

\\v-sv\\2<M + k\\u\\2 + 442 

< A f + * | | « - e M | | 2 + V ^ e ( l + * ) N c x , 

= [M+ ^/r e(l + k)M0] + £M2 

<M 2 . 

Let 
C — {« G W2'2; ||«||oo < M), ||w||oo < N\ and ||w — £w||2 < M2}. 

£/ is a subset of C and £~ l oG maps [0,1 ] x U to C. It follows from the complete continuity 
of the inclusion W2,2 C C1 that U is weakly open in C with de U — {u G C; ||w||oo — 
Mo, ||«||oo — Afi}. By Lemma 3.3, the map X_1oG: [0, l]xf/—> Cisw.s.c. and compact 
in the norm topology of [0,1] and weak topology of W2'2 and L2 with nonempty closed 
convex values. It follows from (H6) that, L~l o (5(1, •) is homotopic to L~l o G(0, •) in 

On the other hand, using the same argument as that for Lemma 3.3, we can prove that 
L~x o G(0, •): U —•»• C is an w. s. c. compact map in the weak topology of W2,2, and by 
assumption (H6), x ^ XL~l o G(0,x) for all À G [0,1] and x G dcU. From the argument 
of Theorem 2.2, we show that L~l o G(0, •) is homotopic to the constant map Û —> {yo} 
in 9QcU(0yQy where yo is the unique solution of the problem yo — £yo = 0,^(0) = (f(0) 
and yo(T) = b. 

Therefore, L~1 o G( 1, •) is homotopic to the constant map Û —> {yo}- By Theorem 2.1 
and Corollary 2.1, X - 1 o G(l, •) is an essential map, and thus it has a fixed point in U. 
This completes the proof. 

We now illustrate Theorem 4.1 by an example. Consider the following special case 
of the problem (3.1): 

(4.1) 

[ x(t) G frp(6)x(t + 0) d0 +/(f, x(t), j°r q{6)x{t + 0) dO, 

x(t) - f° p(6)x(t + 0)dO,x(t) - f° p(0)x(t + 0)d9\ 

x(0) = <p(9),Oe[-r9O], 
lx(T) = b 

wherep,q G L2([-r,0]; Rl) with \\p\\2y/r < \,f\ [0, 71 x R4 —> IR1 is a multifunction, 
with nonempty closed convex values, satifying the following Carathéodory condition: 
(EH1) for each z G R4, the map/(-,z): [0,7] -+ Rl is measurable; 
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(EH2) for a.e. / G [0,71, the map/(f, •): R4 —• R1 is u.s.c; 
(EH3) for any bounded set W Ç 1R4, there exists a function aw G L2([0,7]; R) such that 

\f(t,z)\<aw(t) for BVLzeW. 
Clearly, for the above problem, the associated map g: [0,7] x E\ —•> [R1 is defined as 

follows: 

g(r, w, v,w) = J° p(9)w(t + 0) J6> 

+/(f, w(0, f q(0)u(t + 9) dO, u(t) - f p(9)u(t + 8)d0, v(t) 

- £rP(6)v(t + 6)d6)J 

where we tacitly assume that 

(w, v, w)(t) = (y>, <£, <£)(*) for t G [-r, 0]. 

We now define a new multi-valued map h: [0,1] x [0,7] x £"1 —> IR1 as 

/i(A, r, u, v, w) = A f_rp(0)w{t + 6/) J6> 

+/(*, w(0, / ° ?(0M* + 0)d0, u{t) -\J° p(9)u(t + 0) dO, v(0 

-Ay%(0)v(f + 0)d0Y 

Evidently, (HI) is satisfied, and for each fixed t G [0,7], the map *F,: [0,1] x Ex -* R4 

defined by 

¥,(A, 11, v, w) = (u(t\ jf° q(9)u(t + 0) d0, u{t) 

-\f° p(6)u(t + 9) d0, v(t) -Xf° p(9)v(t + 9) dé\ 

is continuous. Therefore by (EH2), the composite map f(t, %(•)): [0,1] x E\ —> R1 is 
w.s. c , so (H2) holds. 

It is known {cf. [9]) that (EH1) and (EH2) imply that /z(A, -, w, v, w) has measurable 
single-valued selections for any (A, w, v, w) G [0,1] x E\, so (H3) is verified. 

For any (A, w, v, w), (A, w, v, w) G [0,1] x £1, we have 

IIA [° p(9)[w(- + 0)-u>(. + 0)] ^ 1 
II ^ - r Il2 

<H|p|lilk-H>|li 

Thus (H4), (H5) and (H7) are verified. 
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In order to verify (H6), i.e., to obtain an a priori bound for the following two families 
of problems 

(4.2) 

and 

(4.3) 

u(t) G A f_rp(6)u{t + 0) d0 +f(t, u(t), f q(0)u(t + 0) dO, 

i(t) - X f_rp{0)u(t + 0)d0, U{t) - X f_rp{0)U{t + 0) dé\ 

ii(0) = ¥>(0) 
u(T) = b 

u(t) G Xfit, u(t\ j° q(0)u{t + 0) d0, u(t), w(f)) 
ii(0) = ¥>(0) 
u(T) = b, 

we assume the following growth conditions on/: 
(EH4) there exists a constant N>0 such that for t G [0, T] and z = (z\, zi, Z^ZA) G R4 

with |zi| < i q | ^ , M < H ^ M and |z3| > N, it follows that z^ > Ofor 
anya;e/(f,zi,Z2,Z3,0). 

(EH5) for any constant L > 0 there exists a function ?/;: [0, oo) —• (0, oo) such that 

W) G ^ o c ^ ' °°>' Jo° wids = oomd \f(*>z)\ ^ ^(|Z4|) for all z G R4 with 
\zt\ <L,i= 1,2,3. 

We want to show the existence of a certain a priori bound for solutions of (4.2) re
quired in (H6) under the assumptions (EH1-EH5) 

We first show that if \u(t) - Xj°_rp(0)u(t + 0)d0\ < Q for a constant Q > \\ipWoo 
and for all t G [0, T], then ||«||oo < T^ÏMTT^ Indeed, if there exists re [0,7] such that 
|W(T)| = max I «(s) I, then 

se[-r,T] 

U(T)\ <Q+\xj° P(0)U(T + 0) </0 

<G+N2V^kT 

< from which it follows that \u(f)\ < {_,M> r, and thus ||w||oo ^ x_\\ n rr 

We next show that if 

M|oo< U(T)-X [° p(0)u(T+0)d0\ 
J—r 

max 

then 

l\u(t)-XJ° p(0)u(t + 0) 

u(t)-xf_p(0)u(t+0)d0\^ l~WphVr 
l - 2 | H | 2 v ^ 

; 0 < r < 7 | , 

\b\forte [0,71. 

Indeed, in this case, we have ||w||oo < i_f\\ j? +—' from which it follows that 

u(T)-X / p(0)u{T+0)d0\ <\u(T)\ + \\p\\2Vr : „ ,, r  

J-r I 1 - \\p\\2yjr 

file:////ipWoo
file:///b/forte
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and thus 

u(T)-\J°_p(6)u(T+8)d0\ < 
l-2\\p\\2y/? 

u(T)\ = 
l-2\\p\\2^rl 

We then claim that 

(4.4) 
u(t)-\ J° p{9)u(t + 9) 

<B:= max | t f , ( l + ||p||2>/Ô|M|oo, y 

which, by the above argument, implies that 

1 - ifr 

2 V ^ ' 
b\ for r e [0,7] 

1 - P 2vr l v y l - 2 p b \ A J Plbv^ 

Indeed, from the above argument it suffices to verify (4.4) for t G (0, T). If this is not true, 
then we can find f G (0, T) such that [u(t) — A S°_rp(9)u(t + 9) d9]2 attains its maximum 
D2 > B2 at t = f. By the above established result, this implies that \u{t)\ < l_,,D,, r, 

and consequently, | t r q(0)u(t + 9) d9\ < ^ J . ^ V D for t G [0, T\. However, at t = f*, 
we have 

^2 [«(0 -\f_rP(9)u(t + 9)d9^ G 2\f(t\u(f\£rq(9)u(f + 9)d9,u(f) 

- A f_rp(9)u(f + 9), 0)1 fii(/*) - A f p(S)u{f + 8) del. 

By(EH4),weobtain^[«(r)-A J^r/?(0)w(H-0)d0]2 > OaU = f*, which is a contradiction 
to the choice of t*. 

By assumption (EH5), we can find a function i/;: [0, oo) —» (0, oo) such that 

Jo° W) ds = °° a n d 

l/X*, w(0, ̂  q(9)u(t+9) d9, u(t) - X j° p(9)u{t + 0) dfl, w(0 

- A f_rp{9)U{t + 0) d0)\ < ip{\ù(t) - A frp(9)ii(t + 0) rffll). 

Therefore 

d2\ 
dt2 u(t) - A f_rp{9)u(t + 0) dfl] < x[) M -^ [w(0 - A / ° p(0)w(f + 9)) M. 

This implies the existence of a constant M\ > 0 such that |w(0 — A j°_rp(9)à(t + 9) d9\ < 
M\ for f G [0, T] (cf. [4]). Repeating the above argument, we obtain ||w||oo < M\ := 

Likewise, we can verify (H6) for the family of problems (4.3). Therefore by Theo
rem 4.1, the problem (4.1) has at least one solution. 

To illustrate the above result, let us consider the following simple example: 
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EXAMPLE 4.1. Let e: R —» R be the multifunction with intervals as values defined 
as follows 

( \ — l in} if * E (n, n + 1), n is an integer, 
\ [«, n + 1] if x = n is an integer. 

Clearly, e is an u. s. c. convex valued function with x < e(x) < x + 1 for all x G R. We 
define/: [0,1] x IR4-+Ras 

f(t,z) = s(ct(Uz)+Az]M +Bzl), 

where a(t, z) is any bounded Carathéodory function, A > 0, B is any constant and k 
is any nonnegative integer. It is easy to verify that/ satisfies the conditions EH1-EH5. 
Therefore, the problem (4.1) has a solution u G W2,2. 

As a final remark, we point out that Theorem 4.1 can be applied to a much more gen
eral neutral equation than the one examined in this section. Also, we leave applications 
of the topological transversality theorem, to more general boundary value problems of 
neutral equations, for a further investigation. 
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