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Abstract

In this paper, we present some results on the existence of periodic solutions to
Volterra integro-differential equations of neutral type. The main idea is to show the
convergence of an equibounded sequence of periodic solutions of certain limiting
equations which are of finite delay. This makes it possible to apply the existing
Liapunov-Razumikhin technique for neutral equations with finite delay to obtain
existence of periodic solutions of Volterra neutral integro-differential equations (of
infinite delay). Some comparisons between our results and the existing ideas are also
provided.

1. Introduction

The purpose of this paper is to provide an existence theorem for periodic solutions
of the following Volterra integro-differential equation of neutral type:

^ ( * ( 0 - f C{t,8,x(8))ds\ = H(t,x(t))+f O(t,s,x(s))ds, (1-1)

where H(t,x), C(t,s,x) and G(t,s,x) are IR"-valued continuous functions and there
exists a constant T > 0 such that

,x) = H{t,x), C(t + T,s + T,x) = C(t,s,x) and G(t + T,s + T,x) = G(t,s, x)

for — co < s ̂ t < oo and xeUn.
Our main idea, motivated by [3], is to regard the following neutral equations with

finite delay

i(*(t)-\ C(t,s,x(s))ds) = H(t,x(t))+\ G(t,s,x(s))ds (1-2)

as limiting equations of (1-1) and to demonstrate the convergence (to a T-periodic
solution of (1-1)) of a certain equibounded sequence of periodic solutions {x^t)}^ of
(1-2). Applying Horn's asymptotic fixed point theorem in a standard way, we will
show that the existence of such an equibounded sequence of periodic solutions
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follows from the boundedness and ultimate boundedness of solutions to (1*2).
Consequently, we can apply the existing Liapunov-Razumikhin technique for
boundedness of solutions of neutral equations with finite delay (cf. [10]) to obtain
sufficient conditions guaranteeing the existence of periodic solutions of neutral
equation with infinite delay.

Our existence theorem represents an extension of that in [3] from retarded
equations to neutral equations. Due to the addition of the neutral term

jlmC(t,s,x(s))ds,

our approach applies to a class of integral equations

x(t)=\ C(t,s,x(s))ds + h{t) (1-3)
J — 00

as well, where h is a given T-periodic continuous Un-valued function. However, the
addition of this term creates certain difficulties in our study of the existence of
periodic solutions to (1-1). In particular, solutions of (1-1) are no longer differentiable,
and consequently, the uniform continuity of solutions does not necessarily follow
directly from the boundedness. Moreover, since 0 ^ 0, the qualitative behaviour of
solutions of (1-1) depend heavily upon that of the solutions of the associated integral
equation (1*3). For details, we refer to [4] for neutral equations with finite delay, and
to [8, 9, 13—18] for neutral equations with infinite delay.

It has been proved that for retarded functional differential equations and for some
integral equations, the existence of a periodic solution is implied by the uniform
boundedness and uniform ultimate boundedness of solutions in phase spaces
satisfying certain well-known phase space axioms formulated in [5] (see [1-3, 7, 19]
and references therein). One should be able to extend this result to neutral equations
of type (1"1) without using the limiting equations (1"2) at all. Such an extension can,
however, be applied to a concrete example only when (i) an appropriate phase space
is chosen and (ii) the uniform boundedness and uniform ultimate boundedness of
solutions in the phase space are verified. Even for retarded equations with infinite
delay, the choice of an appropriate phase space is not a trivial task. Moreover, little
has been done for the boundedness of solutions of neutral equations with infinite
delay. Our present research provides an alternative for establishing the existence of
periodic solutions of neutral equations with infinite delay. Namely, by going through
the limiting equations (1'2), we avoid the afore-mentioned two technical tasks but
still obtain the existence of periodic solutions of (1-1) from the existing theory of
periodic solutions of neutral equations with finite delay, such as the Liapunov—
Razumikhin technique developed in [10]. For details, we refer to Remark 4-5.

The rest of this paper is organized as follows. In Section 2, we present our existence
results and relate the existence of periodic solutions of (1-1) to the uniform
boundedness and uniform ultimate boundedness of solutions of (1-2). A relation
between the boundedness of solutions of (12) and the qualitative behaviour of
solutions of the integral equation (1"3) is given in Section 3 where some sufficient
conditions for boundedness of solutions of (1"2) are provided in the spirit of the
Liapunov—Razumikhin technique. Finally, in Section 4 we briefly discuss the
assumptions in our major existence theorem and illustrate the difference between our
major result and that in [7] by a simple example.
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2. Main results

Consider the Volterra integro-differential equation of neutral type

G(t,s,x(s))ds, (2-1)

where H{t,x), G(t,s,x) and G(t,s,x) are Revalued continuous functions for — oo <
s < t < oo and xeUn, and there exists a constant T > 0 such that

H{t,x) = H(t + T,x), C(t + T,s + T,x) = C(t,s,x), and

for — o o < s ^ < < o o and xe Mn.
Let BC denote the Banach space of bounded continuous functions from (— oo, 0]

to Un with the supremum norm |-|BC. By a solution of (2-1) through (t0,<j>)eU xBC,
we mean a continuous function x: R -> Rn such that xto(s) •= x(t0 + s) is identical to <fr(s)
for s < 0, x(t) — J ^ C(t, s, x(s)) ds is continuously differentiate and (2-1) is satisfied for
t ^ t0. For the remainder of this section, we assume that for every (t0, (j>) e U xBC
there exists a unique solution of (2-1) through {to,<j>), denoted by x(t;t0,<fi). More-
over, we assume that solutions of (2-1) depend continuously on initial functions
in the sense that for any toeU, fieBC, A > 0 and e > 0 there exists 8 > 0 such that
\x(t;t0,\]r) — x(t;to,(f))\ < e for all te[to,to+A] provided that fteBC and \i/r-<fi\BC < S.
The fundamental existence, uniqueness and continuous dependence theory for
neutral equations has been developed in [13, 14, 18]. Some new results in this theory
will be presented in Section 4.

Denote by XT the Banach space consisting of all T-periodic functions from U to R"
and endowed with the supremum norm |-|T. We assume:

(A 1) There exists a constant M > 0 such that for each positive integer k, the
equation

T (y(t) - f C(t, s, y(s)) ds) = H(t, y) + f G(t, s, y(s)) ds (2-2)fc
dt\ Jt-kT I Jt-kT

has a T-periodic solution yk(t) such that \yk\T ^M.
(A 2) The mapping P:XT^~XT denned by

- f C(O,s,<f>(s))ds+ r C(t,s,(j>(s))ds
J—CO

rt ru
H(u,<p(u))du+\ G(u,s,<p{s))dsdut

J J

n
\

JO o J—00

for (t, 0)e[O, T\ xXT, is continuous.
(A 3) suptelOiT]^eXT{M)\Pt_kTG(t,s,<t>(s))ds\ < co and the sequence

C(t,s,(fi(s))ds\

is equicontinuous on [0, T] for every given <f>eXT(M), where

1-kT

{A 4) lim sup ( | | G(t,s,<j>(s))ds
)t6[0,
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(A 1) is our major assumption. It will be shown below that this assumption is
satisfied if solutions to (2-2)fc satisfy certain boundedness conditions which can be
verified by the Liapunov-Razumikhin technique. (A 4) is a certain 'fading memory'
assumption, in the sense of [2], which represents the reality that a system should
remember its past, but that the memory should fade with time. In Section 4, we will
illustrate that (A 2) and (A 3) are very weak assumptions which are satisfied if C and
G satisfy certain integrability conditions.

We are now in the position to state our main result on the existence of ^-periodic
solutions of the equation (2-1) as a limit of T-periodic solutions to the system (2-2)fc

with finite delay as k^-oo.

THEOREM 21. If assumptions (A l)-(A 4) hold, then equation (2-1) has a T-periodic
solution.

Proof. Let {yk{t)}™.x be a sequence of T-periodic solutions of equation (2-2)k with
\yk(t)\ =^M for all integers k and te[0,T]. Then (A 3) implies that

\(d/dt) (y(t)-it-tT C(t>s< VAs))ds)\ ^ N

for some constants > 0 and for te [0, T], for k = 1,2,.... Therefore for all tlt t2e [0, T],
we have

Jt2It^-kT Jt^-kT

which yields

, I P2 „ P1
\yk(i2)~yk(h)\ ^ ^ a ' 5 ' ? / * ! 5 ) ) ^ 5 " C((i>*>!/t(s))^

IJ«2-fcT Jt^kT

Note that the family of functions {J'_fcTC(M>2/*(5))̂ s}i?.-i is equicontinuous. It
follows that {yk(t)} is also equicontinuous. By the Ascoli—Arzela theorem, we can
assume, without loss of generality, that {yk(t)} converges to a continuous T-periodic
function x(t), uniformly on [0, T\.

Due to the continuity of the map P, we have

lim P(yk) (t) = P(x) (t),

for te[O, T\. On the other hand, by definition of P, for <e[0, T\,

Co n n
0, s,yk(s))ds+\ C(t,s,yk(s))ds+\ H(u,yk(u))du

J —oo J —oo J 0

G(u,s,yk{s))dsdu
JoJ-oo

y*(O)-f° C(O,s,yk(s))ds+(t C(t,s,yk(s))ds
J-kT Jt-kT

n G(u,s,yk(s))dsdu+ H(u,yk(u))du\
u-kT Jo J

n-kT r-kT

C(t,S,yk(s))ds-\ C(O,s,yk(s))ds
J —oo J —oo00

nu-kT
G(u, s, yk(s))ds du.

-oo
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Notice that yk{t) satisfies equation (2'2)k, so we obtain

rt-kT r-kT

\ C(t,s,yk(s))ds-\ C(0,s,yk(s))ds
J— 00 J—00

n ru-kT

JoJ-co
G(u,s,yk{s))du.

Consequently, it follows from (A 4) that

lim P(yk) (t) = x(t),

for<e[0,T]. Therefore z(«) = P(x) (t) for te[O,T]. This means that x(t) is a solution of
equation (2-1). Clearly x{t) is T-periodic. This completes the proof.

To guarantee the existence of equibounded T-periodic solutions for the family of
equations (2-2)fc with finite delay, we introduce the following concepts.

Definition 2-2. Let 8: IR+ ->• U+ be a given continuous function. A family of functions
{/(£)} is called a 5-equicontinuous family of functions on [a, b] if each function /
is defined on [a,b] and, for any e > 0 and t1,t2G[a,b] with \t1 —t2\ < S(e), we have
l/(«2)-/(«i)l<e-

Clearly, if /?:R+->[R+ is continuous and 0 < fi(x) ^ S(x) for all x > 0, then a
5-equicontinuous family of functions is also a /?-equicontinuous family of functions.

Definition 2*3. Let 8: U+ ->• IR+ be a given continuous function. A function / defined
on [a, b] is said to be 5-uniformly continuous on [a, 6] if, for any e > 0 and tlt t2e [a, b]
with l ^ - y < S(e), we have \f{t1)-f(t2)\ < e.

Clearly, a family of functions consisting of all ^-uniformly continuous functions on
[a, b] is a 5-equicontinuous family of functions. Conversely, every function in a 8-
equicontinuous family is ^-uniformly continuous.

THEOREM 2-4. Suppose that
(i) for each integer k and each given initial datum, the solution of (2-2)fc is unique,

and solutions are continuous with respect to initial data;
(ii) the solutions of equations (2-2)fc are uniformly bounded and uniformly ultimately

bounded for B at t = 0;
(iii) for any L > 0 there exists M > 0 such that for all continuous functions x: U -> Un

with supt6R|x(<)| ^ L, jLm\G(t,s,x(s))ds\ ^M and {Pt_kTC(t,s,x(s))ds} is a 8-equi-
continuous family of functions on R+ for some 8.

Then for every k = 1,2,..., equation (2-2)t has a T-periodic solution yk(t) with
\yk(t)\^Bforte[0,T].

Here and in what follows, solutions of equations (2-2)ft are said to be uniformly
bounded at t = 0 if for any B1 > 0 there exists B2 > 0 such tha t <j>eBC and
I^IBC ^ -#i imply \y(t, 4>, &)l ^ B2 for t > 0, where y(t, <f>, k) denotes the solution of (2-2)fc

through (0, <j>). Moreover, solutions of (2-2)fc are uniformly ultimately bounded for B
at t = 0 if for any B3 > 0 there exists T(B3) > 0 such that <j>eBC and \<j>\BC ^B3

imply that \y(t, $, k)\ < B for all t ^ T(B3).
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Proof. For any fixed k, we set

Yk = (0 : [~bT, 0]-> Un; 0is continuous} and |0|fc = sup_t T < s < o |0(s) | .

Then (Yk, \-\k) is a Banach space.
Evidently y(t, <f>, k) depends on the restriction of <fi to [ — kT, 0] only. Therefore from

the uniform boundedness assumption, we can find /?3 ̂  /?2 ^ /?x ^ J? such that

^ e ŷ . with \<j»\k ^ jg implies |g/(«, 0 , fc)| < /?x for t 5= 0,

0 e 7fc with |0 | t «$ /?! implies \y(t, <p, k)\ < fi2 for t ^ 0,

(j> £ 7*. with |^|fc sS Pi implies \y(t, <fi,k)\ < /?3 for t ^ 0,

On the other hand, from the uniform ultimate boundedness assumption, we can find
a positive integer m such that

\y(t, (f>, k)\ <B for t > mT (2-3)

if <f>sYk and \<f>\k < B1. Moreover, by the uniform boundedness assumption and (iii),
there exists a constant M > 0 such that

for all 0eyfc with \<p\k < fi3, which implies that {y(t, (f>, k)} is a £M-equicontinuous
family of functions of t ^ 0, where SM(e) = min{£(e/2), e/(4M)}. We now define three
subsets of Yk as follows:

Sg = {(j> 6 Yfc; |^|fc ^ 5 and ^ is SM-uniformly continuous};

S* = {<fi e Yk; \<fi\k < px and 9J is #M-uniformly continuous};

8\ = {(p G Yk; 1 ^ < /?2 and $i is £M-uniformly continuous).

Then SQ £ S* £ /S* are convex subsets of Yt, »SJ and S* a r e compact and 8* is
relatively open in 8%.

We define the Poincare map f:S%-+ Yk as follows :

Note that for <fieSf we have |/(^)|fc < /?2- Thus/2(0) is well-defined. We claim that
p(<f>)(t) = y(t + 2T,<t>,k) for te[-kT,0]. In fact, for fieS*, the function/(^) is ̂ M-
uniformly continuous and thus f(<f>)eS*. Moreover, y(t + T,(p,k) and y(t,f(<j)),k) are
both solutions of (2-2)fc with the same initial datum (0,/(^)). So by uniqueness,

T,(f),k) = y(tj.f{<t>),k) for all te[-kT,oo). In particular,

y(t + 2T,<j>,k) = y(t + TJ(<f>), k) for - kT ^ ^ 0,

or equivalently,
f(<f))(t) = y{t + 2T,<f>,k) for -kT ^t^0.

Repeating the above argument, we see that f}(Si) c £* for all positive integers j .
Similarly, /'(££) c S*. It is also clear from (2-3) that /'(£*) c 5J for all j ^ m.
Furthermore, / is a continuous map since solutions of (2-2)̂ . are continuous with
respect to initial data. Applying Horn's fixed point theorem, we obtain a fixed point
<j>eS* o f / . T h a t is , y(t + T,<t>,k) = (j>(t) fo r te[ — kT,0]. A g a i n b y u n i q u e n e s s ,
y(t, <p, k) = y(t + T, <j),k), and thus y(t, <p, k) is ^-periodic. This completes the proof.
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3. Uniform boundedness and uniform ultimate boundedness of solutions

We now discuss the uniform boundedness and uniform ultimate boundedness of
solutions to parametrized neutral functional differential equations of the following

type d
jtDa(t,xt)=Fa(t,xl), (3-1)

where aeA for some index set A, Da: U x Ca -> IR" and Fa:RxCa^-Un are given
continuous functionals such that the standard initial value problem to (3-1) is well
posed, Ca = {<f>; <j>: [ — va, 0] -»- Un is continuous} is endowed with the supremum norm
| • |a and va ^ 0 is a constant. In particular, if A = {&}"_! and vk = kT, then we arrive
at (2-2fc) with specific Dk and Fk.

Definition 3*1. A family of maps {Da}aEA is said to be uniformly bounded if there
exists an unbounded non-decreasing function S:IR+->-[R such that for any <oeR,
aeA, <f>eCa, heC([t0,co); Un), H>0 with \<f>\a < H and supoJA(0l < H, the
solution, denoted by ot?(t), of the equation

Da(t,xt) = h(t), xto = </> (3-2)

satisfies \af(t)\ sj S(H) for all t ^ t0.

Definition 3-2. A family of maps {Dx}aeA is said to be quasi-uniformly ultimately
bounded if, there exists an unbounded non-decreasing function B: U+ ->• IR such that
for anyMltM2 > 0 there exists T(M1,M2) > 0 so that for any toeU, aeA, 0eC a and
heC([t0, oo); Un) with supt>o\h(t)\ ^M2 and sup(^(Q|x?|a ^Mv the solution of (3-2)
satisfies \3f(t)\ < B(M2) for t ^ t^ + TiM^M^)-

A uniformly bounded and quasi-uniformly ultimately bounded family of maps is
said to be uniformly ultimately bounded.

The following result gives a very simple sufficient condition ensuring the uniform
ultimate boundedness of {DJaeA. For a broad class of neutral equations satisfying
the conditions in the next proposition, we refer to [4].

PROPOSITION 3-3. Suppose that there exist positive constants Kx, K2 and a such that for
any tQeU, aeA, 0eCa and heC([to, oo); Un), the solution â (<) of (3-2) through (to,<j>)

satisfies la-Wl^e-w-^l^+JT, sup \h(s)\

for t ~$. t0. Then {Da}aeA is uniformly ultimately bounded.

Proof. It is clear that we can take

ln(/?M2)S(r) = (K^+KJr, T(M1;Jf2) = a"1

where /? > 0 is any given constant.

In the following two propositions, we restrict our attention to the case where {Dx} is
of the form

•Da(t,$) = 0(0)— C(t, s, <f>(s))ds
J t-a

in which a ^ 0 and 0eC'a:=C([ — a,0]; Un).
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PROPOSITION 3-4. Suppose that there exist constants B1 ̂  0 and fie[0,1) and an
increasing function Q: U+ -> U+ such that

Jt0
\C(t,s,x{s))\ds*Z:fi max

and f° \C(t,s,x(s))\ds^Q( max |ar(s)|)

for all t^ t0 and xeC([to — a,t]; Un). Then {DJ is uniformly bounded, where S{H) =
H >0.

Proof. Let (a, t0, 0) be given such that |0 | a < H and sup(o ^ s ̂  t h(s)\ < H. Denote by
t* > t0 the number such tha t |a^(<*)| = supt < s < ( . | a f (« ) | . Then

\Da(t*, xf,)\ + C(t*, s, *»(«)) ds
\Jt*-a

\C(t*,8,t(8-to))\ds+{' \C(t*,S,X«(S))\ds
Jt0to-a

+B + fi max

from which it follows that

So \a?(t)\ ^ S(H) for all t ^ t0. Therefore {DJ is uniformly bounded.

PROPOSITION 3-5. Assume that there exist positive constants Blt B2 and /?G [0,1) such
that for any MVM2 > 0there exists F(M1,M2) > OsuchthatforanyxeC([t0 — ot, oo); IR")
with \xt\a ̂  Mx and \Da(t, xt)\ ^ M2 for I ̂  t0, we have

rt-r(M

\C{t,s,x{s))\ds<B1M2
J t0—a.

\C{t,s,x{s))\ds<B1M2
t0—a.

and \C(t,s,x(s))\ds ^ ft max \x(s)\+B2
J(-r(M,,M,) «-r(M,,M

for t ^ to + r(M1,M2). Then {DJ is quasi-uniformly ultimately bounded with B(M2) =
a~1(B2 + (l+Bl)M2), where 0 < a < 1—ft is an arbitrarily given constant.

Proof. Let toeU, <j>eCa and heC([t0-a.,oo);Un) be given. If x"(t) satisfies
\DJt,xf)\ ^M2 and \xf\a <Mx for t > <0, then for t > tQ+ V we have

f \C(t, s, af(s))\ ds + \D(t, a£)| ^ M2 + \ \C(t, s, x*(s))\ ds

+\ )\C(t,s,xa(s))\ds^M2+B1M2+B2+/3 max \x*(s)\.
to-a Jt-rJ t-r^s£t

(3-3)
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If /? = 0, then we are finished. So we assume that /? + 0.
Consider the intervals /„ = [t^ + nT, to + (n+l) F] for n > 2, and choose tneln so

that |af(«n)| = max,6/Jz«(a)|. By (3-3), we get

max |a-(«)|. (3-4)

Put L = j52 + (l+51)ilf2. We examine two possible cases.
(I) For some t*e[tn~r, tn + nT] we have |a*(«*)| = maxtn_r<)S$to|a^(s)|. Then (3-4)

implies that

(II) Otherwise, (3-4) gives |a*(«n)| ^L + 0\a?(tn)\, or

If (II) happens for some integer K ^ 2, then for all w ^ K and in both cases,

I < §
If there is no such integer, then for all n ^ 2, (I) happens. Thus from (3-5) it follows
that

Taking

JV= 3 +

we obtain from (37) that |af(<n)| < L/a = .B(if2) for all n > N.
Therefore |af («B)| ^ 5(ilf2) for all «. ̂  iV, and hence |af (<)| ^ -B(M2) for all« ^ «0+iVT.

This completes the proof.

Example 3-6. Let Da(t, <j>) be given by

Da(t, $) = 0(0) - f (C^ , s, x(s)) + C2(t, s, x(s))) ds (3-8)

where |C1(*,«, ar)j ^K^t — s)\x\, \C2(t,s, x)\ ^,K2(t — s) for — oo < s ^ t < oo, and where
J"iC1(w)dM<l and f™K2(u)du < oo. Then direct verification shows that {DJ
satisfies all the conditions in Propositions 3"4 and 3-5. Therefore {Da} is uniformly
ultimately bounded.

The following two results, in the spirit of Lyapunov—Razumikhin technique, give
sufficient conditions guaranteeing uniform boundedness and uniform ultimate
boundedness of solutions to (3-1).

THEOREM 3-7. Suppose that {Z)a} is uniformly bounded, and that there exist
continuous, increasing, unbounded functions Wt: IR+ -> (R+ for i = 1,2,3, and continuous
functions V: U x §?"-=• U+, W:UxU+^-U as well as a constant M > 0 such that the
following conditions hold:
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(i) \Da(t,$)\ ^ WML),M aUaeA,4>eCcl,teR;
(ii) W^lx}) ^ V{t,x) ^ W2(\x\), for all teR, xeRn;

(iii) if at some teR, \DJt,xt)\ ^M and V(s,x(s)) ^ Wr
2o#oW^1(F(<>Al(<>^))) for

s ^ t, then
Vm)(t,Da(t,xt)) < W(t, V(t,D,{t,xt))),

where S is defined in Definition 3 1 ;

(iv) solutions of z = W(t, z) are uniformly bounded.

Then solutions of (3-l)a are uniformly bounded.

THEOREM 3-8. Suppose that {Da} is uniformly ultimately bounded and solutions of
(3-l)a are uniformly bounded. Assume also that there exist continuous, increasing and
unbounded functions Wt: U+ -»• U.+ for i = 1,2,3, continuous functions V: U x IR™ -> IR+,
W: R x R+ x U+ -+ R+ and constants M, N > 0 such that (i) and (ii) of Theorem 31 are
satisfied and such that the following conditions hold:

(iii) for any /? > 0 there exist S > 0 and h > 0 with the property that whenever t is such
that \xt\^fi, M^V{t,Da(t,xt)) and V(s,x(s)) ^ W2oBoWl1(V(t,D(Z(t,xt))) + S for
se[t — h,t], then

Vi31)(t,Dx(t,xt)) ^-W(t, V(t,Da(t,xt)),S);

(iv) for any H > 0 and toeR there exists T3{H) > 0 such that the solution of z =
— W(t, z, S) with z(t0) ^ H satisfies z(t) < N for all t^to + T3(H).
Then solutions of (3-1) are uniformly ultimately bounded at t = 0.

The ideas of the proof of the last two results are similar to those in [10]. For details,
we refer to [16, 17].

We conclude this section with the following simple example:

(3-9)-j.\x(t)-\ C(t,s,x(s))ds) = Ax(t)+\ G(t,s,x{s))ds+f(t)

where xe R", A is an n x n stable matrix, / : R-> IRn is continuous with

\f(t)\^L<<x>, \C(t,s,x)\^K{t-s)\x\ and \G(t,s,x)\ «S U(t-s)\x\

for* ^ t and xe Rn, where K and U are non-negative functions such that f™K(u)du =
m < 1 and /J° U(t) dt<co.

Since A is stable, there exist a unique nxn positive definite and symmetric matrix
B and constants a and b > 0 such that

ATB+BA = -I, a2\x\2 ^ xTBx ^ b2\x\2.

PROPOSITION 3-9. If

7 i bUo /1+mV , 2fi+mY , .NIDI fi+
1= 1—j[2m +m*[- +2\ATB\m

a \ \l—mj \l—mj \\—

then solutions of (3-9) are uniformly bounded.

m)
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Proof. First of all, we know from Example 36 that {DJ is uniformly bounded, and
S(H) = ((l+m)/(l-m))H for H ^ 0. Let

V(t, x) = xrBx, Wx{r) = a2r2, W2(r) = b2r2 and W3(r) =

for r Js 0. It can be easily proved that V(s,x(s)) ^ W2oSo W^CV&D^t^,)) for s < t
implies that

\ x ( s ) \ 2 < - J \ ± ^ ) 2 \ D a ( t , x t ) \ 2 for s^t, (3-10)

and thus
Vi3.9)(t,Da(t,xt)) ^ -l\Da(t,xt)\

2 + 2L\B\\Da(t,xt)\.

Therefore by Theorem 3*7, solutions of (3-9) are uniformly bounded.

PROPOSITION 3-10. / / conditions of Proposition 3-9 are satisfied, and there exist a
constant y > 0 such that m + y < 1 and

7

then solutions of (3-9) are uniformly ultimately bounded.

Proof. First of all, we know from Proposition 35 and Example 36 that {Da} is
uniformly ultimately bounded with B(M2) = ((2 — y)/y)M2 for M2 ^ 0. Using all the
functions employed in the argument of Proposition 3-9, we can show that condition
(iii) in Theorem 3-8 is satisfied with W(t, z, S) = I*/(2b2) z (cf. [16] and [17] for details).
Therefore, by Theorem 38, solutions of (3-9) are uniformly ultimately bounded.

4. Discussion

For convenience of later reference, we start this section by listing some growth,
Lipschitz and uniform continuity conditions on the kernel functions C and G of
equation (2-1).

(H 1) For any M > 0 there exists a continuous function QM: R+-> R+ such that

QM(t)<co and \C(t,s,x)\ + \G(t,s,x)\ ^ QM(t-s)r
Jo

for0^t,s^T and xeRn(M) ••= {xsUn;\x\ ^M).
(H 2) For any M > 0 there exists a continuous function UM: U+ -*• U+ such that

lfUM(s)ds < oo and

\C(t,s,x)-C(t,s,y)\ + \G(t,s,x)-G(t,s,y)\ ^ UM(t-s)\x-y\

for 0 < s,t ^ T and x,yeUN(M).

(H 3) For any e, M > 0 there exists S > 0 such that

i,s,x) — C(t,s,x)\ds < e

for any teU, xeU"(M) and Ae(O,S).

I
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Remark 41 . The local existence and uniqueness of solutions to (2-1) through (t0, <j>) e
IR+ xBC has been considered in [13, 18]. A standard application of the fixed point
theorem for set-condensing mappings shows that if H(t, x) is local Lipschitz in xe IR"
and if (H 1) and (H 2) are satisfied, then for any (t0, (j>)e IR+ ~x.BC, (2-1) has a unique
solution through (t0, <fi).

Remark 42. Under the assumptions (//I) and (H 3), solutions of (21) depend
continuously on the initial data. In fact, if the conclusion is not true, then we
can find a constant eoe (0,1) and sequences {xfrk} £ BC and {tk} £ (t0, to+A] such that
\^k-4>\Bc < k'1 a n d \^;to,r/rk)-x(t;to,(f>)\ < e0 for te[to,tk) and

For simplicity, let xk(t) = x(t;to,ifrk) and x(t) = x(t;to,<f>). Without loss of generality,
we may assume that {tk} is an increasing sequence and tk->t0 + <x as k -> oo for some
ae(0,A].

Define
(xk(t) for te[to,tk]

yJt) = i
[xrfj for te(tk,t0 + a].

We now claim that {yk(t)} is equicontinuous on [to,to + a]. Indeed, if not, then there
exist e1 > 0 and sequences {sk} £ (to,tk] and {Afc} £ (0, oo) such that limj.^^ Ak — 0,
sk-Ak ^ t0 and l2/fc(sfc)-2/fc(5fc-Afc)| ^ ex for k = 1, 2, ....

Let

Clearly I^CTJ.) — yk(rk — Afc)| ^ ej. On the other hand, it follows from equation (2-1)
that

I C^k fTk~Ak

= C(Tk,s,xk(s))ds— C(Tk — Ak,s,xk(s))ds
U—00 J— 00

frk A* fu
+ H(s,xk(s))ds+ G{u,s,xk(s))dsdu

Crk~^ik

J — oo

J TL.-&L.

Consequently, by the assumption (H 1) we have

J —o

J Tk-&t J —0
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where

M = 1+ sup \x{s)\,
— 00 < 5 < to+X

C* = sup{ \C( t , s , z ) \ ; t o ^s^ t^ t o + a,\z\ <M),

H* = sup {\H(s, z)\; t0 ^ s ^ t0 + a, |z| < if}.

By the assumption (H 3), we can choose if so large that for all k ^ K, we have

r: C-Ak,s,xk(s))\ds

and
f00

Jo

Therefore l2/fc(Tfc) — 2/A(Tfc — Afc)| < K + K = K . which contradicts the fact that
\yk(Tk) — yk(Tk — &h)\ > ev This proves the equicontinuity of {yk(t)} on [to,ta + a].

By the well-known Ascoli-Arzela theorem, we may now assume that {yk(t)} is
uniformly convergent to y(t) on [to,to + a]. Moreover, from equation (2-1), we have

y*(0 = yM~ f° O(t0,s,yk(s))ds+ I C(«,«,yfc(«))da+ | H(s,yk(s))ds
J-oo J—oo J<0

+ G(u,s,yk{s))dsdu
J«0J-oo

for <e [<„,<„ +a] . Taking k^co in the above equality and applying the Lebesgue
dominated convergence theorem, we obtain

= y(to)-\° C(to,s,y(s))ds+\ C(t,s,y(s))ds+\ H(s,y(s))ds
J-00 J-00 J«o

G(u,s,y(s))dsdu
J t0 J -

for <€[<„,<„ + a]. Obviously y( = </>• Soy is a solution of (2-1) through {to,<f>), and thus,
by uniqueness, x(t) = ?/(<) on [<0

This contradicts the fact that \xk{tk)-x(tk)\ = e0 for k = 1,2,..., completing the
proof.

Remark 43 . The assumption (A 2) is satisfied if C and G satisfy the Lipschitz
condition (H 2). Indeed, let <j><=XT and e > 0 be given. From the continuity ofH(t,s),
we can find ^6(0 ,1) such that \H(s,iJr(s))-H(s,<f>(s))\ < e/(4T) for se[0,T] and
i/rsXT with | ^ — 0|T < #j. Let UM be a continuous function defined as in the
assumption (H 2) with M = |0|T, and put

7£

Jo
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Then for (t,i/r)e[O, T] xXT with \i/r-<f>\T < S, we have

\PW){t)-P{<t>)(t)\ = [C{0,8,ifr(8))-C{0,8,t(8))]d8r(O)-0(O)- P
J -a

I [C(t, 5, rjr(s))-C(t, s, 0(5))] ds+\ [H(u, r}r{u))-H{u, cj>(u))}du
J-co Jo

T | [G(u,s,f(s))-G(u,s,<f>(s))]ds
J0 J — oo

})l+ UM(~S) I0"(5) — 4>(s)\ds
J-ao

c/M(<-5)if(S)-0(5)i^+rr
-oo JoJ-tx

\H(u,i/r(u))-H(u,<f>(u))\du
Jo

UM{s)ds + T

This completes the proof.

Remark 4-4. Assumption (̂ 4 3) is implied by the growth condition (H 1) and the
uniform continuity condition (H 3). To prove this, we fix <j>eXT with |0|T ^M. Let
t^^elO,T\ with «2 > tv Then it follows from (H 1) and (# 3) that for any given
e > 0 there exists S = #(7lf, e) > 0 such that for k = 0,1,2,...,

/ ;kT
and

whenever \tl —12\ < d. Therefore, if |<j —12\ < S, then

C{t2,s,(j)(s))ds-\l C{tv s, 0(5)) ds
t2-lcT Jt^-kT

C(t2,s,<f>(s))ds-\ C{t2,s,<j>{s))ds
J
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This proves the equicontinuity of the sequence of functions

L C(t,s,<f>{s))ds,
-kT

for/fc = 1, 2, ..., on [0,T].

Remark 45 . Theorems 21 and 2-4 can also be applied to integral equation of the
type

*(t)=M+\ C(t,s,x(s))ds, (4-1)
J-00

where/: IR-̂ -IR" is continuous and f(t + T) =f(t) for teU. In [7], Islam proved that
(41) has a T-periodic solution if solutions of (4-1) are g-uniformly bounded and
g-uniformly ultimately bounded, where g: ( — oo,0]->-[l, oo) is a continuous and
decreasing function with g(0) = 1 and Mmr^._oog(r) = oo. Islam did not use limiting
equations at all, but his result holds only when (i) solutions of (4-1) are ^-uniformly
bounded and gr-uniformly ultimately bounded, and (ii) / ! „ C(t, s, <f>(s)) ds satisfies
certain Lipschitz condition for every continuous function <f>: (— oo, 0] -> IR" such that
suP«<ol^(s)l/^(s) "̂  °°- Our assumptions for the existence of ̂ -periodic solutions of
(4-1) are slightly weaker than those of [7] in the following sense: first of all, g-uniform
(ultimate) boundedness implies uniform (ultimate) boundedness of solutions of (4-1);
secondly, we avoid the problem of choosing the weight function g and the phase
space. In particular, we require certain Lipschitz conditions on /L^ C(t, s, <p(s))ds only
for bounded continuous functions <j>: (— oo, 0]->• IR". To illustrate this, we take as an
example the simple scalar integral equation

Ix(t) =/(<)+ a(t-s)h(s,x(s))ds, (4-2)
J — 00

where a: U+ -» R and h: IR2 -> IR are continuous, and h(t + T,x) = h(t, x) for (t, x) e U2.
Applying Propositions 34, 3-5 and a version of Theorems 31 , 3-2 for integral
equations, we conclude that (42) has a T-periodic solution if the following conditions
are satisfied:

(C 1) h(t, x) is local Lipschitz in xe U and there exists a constant a > 0 such that
\h(t, x)\ ^ a\x\ for all« e [0, T\ and x e U;

(C2) af«>\a(t)]dt< 1.

On the other hand, under the assumption (C 2), there exists a function g: (— oo, 0]->
[l,oo) with g(0) = 1, l i m ^ ^ r ) = oo and a. j^\a(t)\g(-t)dt < 1 (cf. [1, 18]). In order
to apply Islam's result to obtain a T-periodic solution of (4-2), in addition to (C 1) and
(C 2), we have to assume that there exists a constant L > 0 such that

(C4*) \j]a(s)ds\^L\t-T\,
(C5*) \f(t)-f(T)\^L\t-T\,

for t, r e [0, T\. Note that (C 4*) implies that a is bounded, but we do not need this
boundedness. Moreover, the verification of (C 3*) is not a trivial matter if g is not
explicitly constructed.
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