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ANALYSIS OF A MODEL REPRESENTING
STAGE-STRUCTURED POPULATION GROWTH
WITH STATE-DEPENDENT TIME DELAY*

WALTER G. AIELLOt, H. I. FREEDMAN$, AND J. WU

Abstract. A stage-structured model of population growth is proposed, where the time to ma-

turity is itself state dependent. It is shown that under appropriate assumptions, all solutions are
positive and bounded. Criteria for the existence of positive equilibria, and further conditions for the
uniqueness of the equilibria are given. The stability of the equilibria are also discussed. In addition,
an attracting region is determined for solutions, such that this region collapses to the unique positive
equilibrium in the state-independent case.

Key words, attractor, bounded, equilibrium, positivity, single-species, stability, stage struc-
ture, time delay

AMS(MOS) subject classifications. 92A17, 34K20

1. Introduction. In [2], a stage-structured model of population growth consist-
ing of immature and mature individuals was analyzed, where the stage-structure was
modeled by the introduction of a constant time delay. Previously, other models of
population growth with time delays were considered in the literature [1], [7], [8], [10],
[11], [14], [16], [17], [20]. Age- and stage-structured models of various types (discrete
and distributed time delays, Stochastic, etc.) have also been utilized [4], [12], [15],
[18], [21].

In [9], it was observed that for Antarctic whale and seal populations, the length
of time to maturity is a function of the amount of food (mostly krill) available. Prior
to World War II, it was observed that individual seals took five years to mature, small
whales took seven to ten years, and large whale species took twelve to fifteen years
to reach maturity. Subsequent to the introduction of factory ships after the war, and
with it a depletion of the large whale populations, there was an increase in the krill
available for the seals and the remaining whales. It was then noted that seals took
three to four years to mature and small whales now only took five years. Maturation
time for large whales also significantly decreased.

Since the amount of food available per biomass for a fixed food supply in a
closed environment is a function of the total consumer biomass, we modify the model
considered in [2] to include a monotonically decreasing, state-dependent time delay.
The existence of a such monotonically increasing time to maturity has been observed
in other contexts as well. For example, Andrewartha and Birch [3, p. 370] describe
how the duration of larval development of flies is a nonlinear increasing function of
larval density. We believe that this is the first time such a population model has
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856 G. AIELLO H. I. FREEDMAN AND J. WU

appeared in the literature. It is the purpose of this paper to analyze as best we can
the proposed model.

In the next section, we propose our model. In 3, we obtain positivity and bound-
edness results. An equilibrium analysis will follow in 4. In particular, we show that
multiple positive equilibria can exist (where the constant time delay case only allows
at most one), and we obtain criteria for the uniqueness of an equilibrium and for its
asymptotic stability. In 5, we examine the global behavior of solutions. Such be-
havior has been considered important in the literature [5]. A brief discussion follows
in 6.

2. The model. In [2], we utilize the system

(t) x.(t) .(t) -.(t ),
(2.1)

2m(t) ae-rx(t T) Dx(t),

where x(t) and x(t) represent the immature and mature populations densities re-
spectively to model stage-structured population growth. There, T represents a con-
stant time to maturity, a, D, and 7 are positive constants.

Here we modify system (2.1) to account for the observed dependence of T on the
population density. Hence we consider the system, where z x + x,

(t) (t) x(t) -()x(t (z)),
(.) (t) -()(t ()) (t),

x(t) (t) o, (t) (t) o, - t o,

where.=d/dt, a > O, > O, > O, Tm T(Z) TM, (Tin andTM are defined
in (2.3) below), m(t) is the given initial mature population, and (t) is the derived
immature population ( explained in what follows) on --TM t O. Since T(Z) is
observed to be an increing function of population density with a lower limit, we
further sume that T’(z) exists (t d/dz), so that

(2.3) T’(Z) O, 0 < T T(Z) TM,

with.limz0+ T(z) Tm and limz T(z) TM.
Now, for the model to make sense, i.e., so to exclude the possibility of adults

becoming immatures except by birth, we must impose conditions on T(Z(t)) SO that
t--T(Z(t)) is a strictly increing function of t. Thus we need (d/dt)T(Z) T’(Z)2(t) <
1. This is equivalent to

’(z)((t) + (t))< 1 or ’(z)((t)- ex(t)- Z(t)) < 1.

We know that T’(Z) 0 is true. Now, if T’(Z) 0, we have a constant delay and,
clearly, t-T(Z(t)) is strictly increing. Hence we sume T’(Z) > 0, in which ce

,(z)(x(t) -,(t) Z(t)) ,(z)((t) Zz(t)),

provided that xi(t) O. Thus if T’(Z)(ax(t) X(t)) < 1, t T(Z(t)) is strictly
increing. However, (aXm (t) x(t)) attains its mimum value of a2/4 when
Xm a/23. Thus if

(2.4) ,(z) < 4Z/,

t T(z(t)) will be strictly increing. Thus we have proved the following theorem.
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ANALYSIS OF A MODEL 857

THEOREM 2.1. Let (2.3), (2.4), and xi(t) > 0 when t > 0 hold. Then t T(Z(t))
is a strictly increasing function of t.

Now, let Tu be defined so that

+

Such a exists, since if we regard (2.g) an expression in which r is a variable,
the left-hand side increes from ero to infinity, the right-hand side will incree,

but is bounded below by r and above by rM. The value r so defined may not be
unique, so we se

T inf =" T (m(0)+ m(s)esds)

We then define i(O) f am(s)esds, which by the change of variable r s +
and then resubstituting s for r becomes

(2.6) (01

In this manner, i(0) represents the accumulated survivors of those members of
the immature population born between time -rs and 0.

For values of t, --T t 0 we understand that x(t) m(t), and that
xi(0) i(0). Note also that T(z(O))

3. Positivity and boundedness. Since the solutions of system (2.2) represent
populations, it is important to show positivity and boundedness. Positivity implies
that the system persists, i.e., the populations survive. Boundedness may be interpreted

a natural restriction to growth a consequence of limited resources. We develop
these considerations in the following theorems.

THEOREM 3.1. Let m(t) > 0 for --TM t O. Then Xm(t) > 0 for t > O.
Proof. Suppose that x(t) 0 for some value of t. Since Xm (0) > 0, by continuity

of solutions, such a value of t must be strictly greater than zero. Let t* inf {t t >
O,x(t) 0}. Then from system (2.2) &re(t*) e-((t*))(Xm(t -T(Z(t*))). Since
T(Z) > O, t* T(z(t*)) < t*, implying that x(t*-w(z(t*))) > 0 by definition of t*.
This, in turn, implies that &m(t*) > 0, giving us a contradiction. Therefore no such
t* exists, and the theorem is proved.

The next theorem shows that for a given positive initial function, xm(t) is uni-
formly bounded away from zero.

THEOREM 3.2. Let m(t) > 0 for--TM t O. Then there exists a 5m
5m(m) > 0 such that xm(t) > 5m for all t O.

min{inf-M m(t), Z--ie--M }. Assume that thereProof. Let 5(m)
exists a t* such that t* inf{t t O,x(t) 5m}. Since Xm(O) m(0), and
(0) 25m, by continuity it follows that t* > 0. Hence

e--TMm e--TMm > O.

Since &(t*) > 0 is impossible by definition of t*, we have a contradiction. Therefore
no such t* exists and xm(t) > 5m(m) for all t > 0. This proves the theorem.

We now show that the mature population is bounded.
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858 G. AIELLO H. I. FREEDMAN AND J. WU

THEOREM 3.3. Let m(t) > 0 for--TM (__ t <_ O. Then there exists Am
(m) > 0 such that Xm (t) <_ A, for t >_ O.
Proof. Our proof is split into two cases. (a) First, suppose that &,(t) >_ 0 for all
T for some T _> 0. Then for t > T + 7M,

o _< .(t) .-(())x. (t- (z(t))) Zz(t)
_< .-(()).(t) Zz(t),

since x,(t- T(z(t))) <_ X,(t). This, in turn, implies that

xm(t) <_ a-le-’’(z(t)) <_ o-le-’’

for t > T, since Xm(t) > 0, giving us our desired result.
(b) Now assume that there exists a sequence {t,},__l such that &,(t,) 0, and

such that x,(tn) is a local maximum, where xm(t) <_ Xm(tn), 0 < t < t, for all n.
Then by a similar analysis at t t, the result follows.

Thus, choosing Am(m) max{sup_M<t<0 m(t), c-le-- }, proves the the-
orem.

Now, Theorems 3.2 and 3.3 show that, given an admissible set of initial conditions,
solutions x,(t) to system (2.2) will remain positive and will be bounded. We now
prove that solutions xi(t) will be bounded above by a bound that depends on initial
conditions.

THEOREM 3.4. Let m(t) > 0 for --Tin

_
t

_
O. Then there exists a Ai(m)

xi(O) -[- a"/-1Am such that xi(t) < Ai for all t.
observe that since xi(O) f8 c,(s)esds, Ai is indeedProof. First, we a

functional depending only on m(t). Then from system (2.2),

(t) ..(t) .x(t) .-(())z.(t (z(t))).

Integrating this expression we get, for t > 0,

xi(t) e-txi(O) + ae- eSxm(s)ds

ae-’rt e’re-’r’(())Xm(S T(z(s)))ds.

Hence

proving the theorem.
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ANALYSIS OF A MODEL 859

Finally, we would like to prove that xi(t) > 0 for all values of t. However, this
does not seem to be possible without placing additional restrictions on either the initial
conditions or on the delay function T(z). For example, if we assume that Tr(Z) 0,
then we have shown in [2] that xi(t) remains positive for all t, but, of course, there we
had no state dependence of the time delay.

However, it is possible to state conditions on Tr(Z) that for a given set of initial
conditions will give us the positivity of xi(t), while at the same time maintaining the
essential character of the state-dependent time delay.

THEOREM 3.5. Suppose that (2.4) is satisfied and that T(Z) > 0 is small enough
so that the inequality

(3.1) ’ esds > Am 4 2"(z)
esds

T

holds for all values of t. Then xi(t) > 0 for all t >_ O.
Proof. Suppose that xi(t) 0 for some value of t. Define

t* -inf{t > 0" xi(t)- 0}.

Since xi(0) > 0,
we get

t* > 0 by continuity. Then integrating the first equation of (2.2),

xi(t*) e-t’xi(O) + ce-7t" fo eTxm(s)ds
t*

ae-t" oo ee-’(z())Xm(S T(z(s)))ds.

Since xi(t*) 0 and ,since xi(O) fo aex.(s)ds this is equivalent to

(3.2) esxm(s)ds e(8-7.(z()))Xm(S T(Z(S)))ds.

Substituting r s- T(Z(S)) into the right-hand side of (3.2) and then resubsti-
tuting r for s we get,

exm(s)ds 1--T’(Z)k(S)
ds.

Now, since xi(t) > 0 for t < t*, by Theorem 2.1 we have that t-T(z(t)) is an
increasing function of t for t < t*, so that 1- T’(Z)k(t) > 0 holds for --T < t <
t* --T(z(t*)). Since Xm(t) > 0 as well, we get the inequality

e/Sxm(s)ds <
7. _7. 1--r’(z)k(S)

Us.

This gives us

(3.3)

t* ft*exm(s)ds <
--7.m --7" 1--T’(Z)k(S)

 -r8 1 --T’(Z)k(S) ex.(s)ds
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860 Ca. AIELLO, H. I. FREEDMAN, AND J. WU

Now the left-hand side of inequality (3.3) satisfies

:* t*

t* e’SXm (S)ds >- m t* esds"
7-rn 7-rn

The right-hand side satisfies

7-8 1--T’(Z)k(s) e’lSXm(S)ds < Am
-r8 1--r’(z)(s)

esds.

However, T’(Z) > 0 and r’(z)i(t) < 1, so, since x/(1 x) is an increasing function for
0 < x < 1. Furthermore, for fixed T’(Z), T’(Z)k(t)/(1--r’(Z)k(t)) is maximized when
k(t) is at its maximum value, which, as we saw in the previous section, is k(t) c2/4l.
So we have that

/*--r, Am r’(z)i(s)
-7-8 1--T’(Z)k(S)

esds _< Am 4J- c2r’(z)
eds

is true. Thus we have the following inequality:

(3.5)
7-8 1

e ’xm(s)ds

-< Am 4/ a2T’(Z)
esds.

Finally, putting inequalities (3.3)-(3.5) together, we get that, at t*,

esds

must be true. This contradicts the hypothesis of our theorem, so no such t* can exist
and xi(t) > 0 for all t > 0. This proves the theorem.

Whether Theorem 3.5 imposes conditions on T’(Z) that are too stringent remains
the subject of further research. For the remainder of this paper, however, we assume
that xi(t) is positive for all t. In any case, since our conditions for x(t) remaining
positive depend in part on hrn(grn) and on Am(Om), a given set of initial conditions
for system (2.2) may or may not be admissible, depending on the system parameters.
Thus we achieve sufficient conditions for the positivity of xi(t) by placing restrictions
on both T’(Z) and on the initial conditions.

However, noting that Theorem 3.5 gives only sufficient conditions for an initial
function to give a meaningful solution, we can also state the following theorem.

THEOREM 3.6. Suppose that e-’r. <_ 5m/Am. Then xi(t) > 0 for all t > O.
Proof. From the proof of Theorem 3.5, we know that if t* inf{t > 0 x(t)

0} < oo, then (3.2) is true. The left-hand side of (3.2) satisfies

(3.6)
t*

(Srn’)’--l(g"t*- e. -’7-8

_
/_ e’"x. s ds
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ANALYSIS OF A MODEL 861

by substituting the lower bound 5,, for the function Xm(S) and integrating.
similar manner, the right-hand side of (3.2) satisfies

(3.7) j0
t"
e:(S-(z(8)))Xm(S- T(Z(S)))ds <_ im’)/-le-/rm(e’t" 1).

Now, let

In a

fl(t) 5m’-(e; e-’) and re(t) Am’-le-;’,(e’ 1).

Also, f(t) -5me and f(t) Ame-.et. Hence, if e-- _< am/Am were true,
then f(t) <_ f(t) would be true for all t. Since f2(0) < fl(0) is true, then it would
be necessary that f2(t) < fl(t) be true for all t if e-- < am/Am were to hold.
However, (3.2) together with (3.6) and (3.7), implies that fl(t*) <_ f2(t*). Therefore
if e- < am/Am then no such t* could exist, and xi(t) 0 would be impossible for
any t. This proves the theorem.

Theorem 3.5 seems to imply that as T(Z) gets larger, the more restricted the set
of admissible initial functions becomes, and that if T(Z) approaches the value 4//a2

for some value of z(t), that the set of admissible functions approaches the null set.
Theorem 3.6, however, seems to imply that there will always be some initial function
that gives a solution to the system where xi(t) remains positive, independent of any
behaviour of T(z).

We are not able, however, to bound xi(t) below by any value strictly greater
than zero. The conditions we must impose on the system and its initial conditions to
get such a strictly positive lower bound for xi(t) remain a subject for further study.
However, in 5 we will see that the limit as t approaches infinity of xi(t) is strictly
positive given some simple assumptions on T(Z).

4. Equilibria: Existence and local stability. There are only two types of
equilibria, namely, the origin (denoted by E0(0, 0)) and one or more interior equilibria
(denoted by

Clearly, there are no axial equilibria other than E0. This is obvious biologically
as well, since the mature population cannot survive without the immatures, and vice
versa.

Showing that/ always exists is equivalent to showing that the algebraic system

(4.1) aXm /xi ae-(Z)x, O,

(4.2) ae-*() x, 0

always has at least one positive solution. Let F1 be the solution curve for xi _> 0, Xm

_
0 of (4.1) and let F2 be the solution curve for (4.2).

Let us first consider the solution curve F2. This curve is strictly decreasing,
passing through (0, a) in the xi- x, plane, where a is the unique positive root of
/a ce-r(a). To show that F2 is strictly decreasing, we compute dxm/dxi along F2.
From (4.2), we have that Xm -c-le-(), so that differentiating (4.2) we get

dxm a/e-’(Z)T’(Z)
dxi + a’e-()"(z)
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862 G. AIELLO, H. I. FREEDMAN, AND J. WU

which is always less than zero since T’(z) > 0 is assumed. Furthermore, limx- x,(xi)
b along F2, where b --lae--’’M.
F1 has the following properties: (0, 0) E F. Furthermore, on Fl,limx-, Xm(Xi)

(x). Hence F1 and F2 must intersect at positive values, establishing the existence
of

It is not necessarily the case that/ is unique, since F and F2 may intersect at
more than one point. Such nonuniqueness of stable equilibria has also been observed
in nature in the case of Antarctic whales (see [13]).

It is therefore desirable to obtain criteria for there to exist a unique equilibrium.
Both F1 and F2 define Xm as a function of x, Xm gl(Xi) and Xm g2(xi), respec-
tively. Then/ will be unique, provided that g’ (&i) > g(&i) for every such/, since if
there were more than one/, the reverse inequality must hold for alternate equilibria.

Now from (4.1) we have that aXm-Txi--Oe-’’r(Z)Xm 0 along F. Hence, along
this curve, Xm (a ae-(z)) 7xi. Taking derivatives with respect to xi gives us

7(1(4.3) gi(xi) (1 e-() + 7xe-()T’(Z))
om (4.2), we see that

e-()’(z)(4.4) g(x) + ae_(),(z)
where in (4.3) and (4.4), xm is the appropriate function of x.

Now from (4.1) and (4.2) we get the relations

e-()
(4.)

_( Z),
and also

(.6)

i()
-[1 &T’()]

,,-,()g(&i)
1 +’&mT’()

Hence gl (&i) > g(&i), provided

(4.7) -[1 3&T’()] 7&mT’(2)

Now from (4.2), clearly &m < Z-1. Hence Z&m + Z?T’() >
Z&T’() 0. Hence inequality (4.7) is equivalent to

(1 + ,())( Z-’()) > -’(e)(- +Z Z-’(e)).
However, the left-hand side of this equality becomes

1 + &mT’()(’ &m) ’)’&amT’()2.
Thus the inequality becomes

1 + ,( &,)T’() --/’&T’()2 > &mT’(2)( a + 3,
which, by combining terms, gives us that g (&i) > g2(x), provided

(4.8) 1 + &.T’(2)(a + 7 2/2.) > 0.

We are now ready to state and prove a theorem giving criteria for uniqueness
of/.
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ANALYSIS OF A MODEL 863

THEOIEM 4.1. If any one of (i) - > a; (ii) &m < 2f for all &m; (iii)
T’() < 1/(&m(2&m- a--/)) holds, then J is unique.

Proof. If (ii) holds, then inequality (4.8) is valid. Since &m < a-1, then if (i)
holds, (ii) also holds. Finally, it is clear that if (iii) holds, then inequality (4.8) is valid.
This proves the theorem.

As much as possible, we carry out a stability analysis of the equilibria, noting
that the linearized stability theory for state-dependent delays is not yet completely
developed. The following analysis, which is only a local stability analysis, is only
formal in nature.

Let E*(x, x) be an arbitrary equilibrium. Then the variational system of sys-
tem (2.2) about E* is given by

(4.9)

d (x()) (-+,dt x,(t) -* -2Zx * xm(t)

+(o
where

(4.10)

This leads to a characteristic equation given by

(4.11) det
ae-(*)(+) a *

+ 2x + * ae-r(z*)(+)

For the equilibrium Eo(0, 0), clearly * 0, and (4.11) reduces to

( + ")() ae-’-(+) O.

Clearly A - is one of the eigenvalues. All other eigenvalues are given by solutions
of

ae-rm(+)

which always has a real, positive solution. Hence E0 is a saddle point.
For any interior equilibrium/(&i, &,), we set

Expanding the characteristic equation (4.11) gives us

which is equivalent to

: + [7 +2 .-()(+)] + (d +2 .-()(+)) (2) -D
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864 G. AIELLO, H. I. FREEDMAN AND J. WU

so that

+ b +]+(+) + -()(+))( + ).

Then, since ae-r()T()&m &T’() we have

+ [+2Z]+Z[’()+2-2Z’() +’()] Z-()(+),

which gives us

(4.12) + [2 +] +Z[2 +(+ 2)r’()] Ze-()( +)
the characteristic equation. This characteristic equation is similar to one described

in [19], but differs in the signs of some of the coefficients. Also see [6] for general
theory in this regard.

In [2], where ’(z) 0, it w shown that is globally ymptotically stable.
Our first stability result for a state-dependent time delay is that if T() 0, local
ymptotic stability holds.

THEOREM 4.2. Let T() O. Then is locally asymptotically stable.
Proof. If T’() 0, the characteristic equation (4.12) can be written

(4.13) (A + )(A + 2& Z&e-(s)) 0.

Again A -7 is one eigenvalue, and the others are given by the equation

(4.14) A + 2}m }me-7().

Suppose that e A 0. Then from (4.14) we compute the real parts of A and get

e A + 2&m &me--7r()e COS (T()m A)

Hence e A -&m < 0, a contradiction proving the theorem.
We now consider the ce where T’() > 0. We let A + iu and separate the

characteristic equation (4.12) into real and imaginary parts, giving

: + (2Z + 7), + Z-.[(7 + .) cose + .sine.].
(4.15)

2us + (2&m +) &me-+[u cosu- ( + p)sin u],

where
e (), v Z[+(, + Z),()].

We will think of as a parameter that varies with T’(). When T’() 0, then
2ff&, and for this value of , is ymptotically stable.
Suppose now that there is a first value of T() > 0 such that for this value

gives us that 0, so that loses its stability. Then (4.15) becomes

v2 -&m[ cosv + u sin u],
(4.16)

(2Z&m + 7)u &m[ cos 7 sin].

Squaring and adding (4.16) gives

(4.17) a + [3:& + 4&, + 2]: + [: ::&] 0.

For such to exist, (4.17) must have real roots. Hence we can now prove the following
theorem.
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ANALYSIS OF A MODEL 865

THEOREM 4.3. If either (i)&m <_ (a +7)/2/3 or (ii)&, > (a q-7)/2/ and
T’() <_ 3/(4&m(2&m- a- 7)) holds, then is locally asymptotically stable.

Proof. After substituting for /, (4.17) becomes, after combining like terms and
rearranging,

u4 2/72m (a -b 7 23Cm)T’()u2 -b/32724.[(a + 7 2Dm)T’()]2

Thus we get the relation

f(v2) v2 -/372-T’()(a + 7 2m)]2 + [3322 + 72]v2
+ 32722m + 4/2723m(a + 7 2/m)T’() 0.

Observe that the first three expressions in f(v2) are always positive. So, if Xm (_
(a + 7)/2/, the last expression is also positive since , > 0, T’() > 0 by assumption,
and (a + 7- 2/3,) > 0 will be true. Hence f(v2) > 0, and no such ) can exist.

Now, if, > (a + 7)/2, then (a+7-23,) < 0. Then if T’(Z) < (m(2/m--
a- 7)) we have

3
3/32722m + 4D2723m(a + 7 2i,)T’() _> 33272i2m 42723m 4m

Since the first two terms of f(v2) are positive, then f(v2) > 0 must hold. So if either
(i) or (ii) holds, then f(v2) > 0 for all v2 _> 0, and (4.17) has no real solution. Then
for that value of T’(), # 0 is impossible. Hence, since # < 0 when T’() 0, by
continuity, # < 0 for that value of T (), proving the theorem.

We note that in the case where E is not unique, unstable (saddlepoint) equilibria
must exist.

5. Global behavior of solutions. In this section we are interested in obtaining
some global properties of the solutions of our model. In particular, we wish to ascertain
that their behavior is reasonable, provided the initial inputs are reasonable.

The first results show that if the mature population remains below or above a
certain value for length of time TM, it will do so from then on.

THEOREM 5.1. Let (xi(t), Xm(t)) be a solution of system (2.2).
(i) /f there exists tl >_ --Tm such that Xm(t)

_
a-le-’rv’ for tl <_ t <_ tl + TM,

then Xm(t)

_
a-le-r. for all t >_ tl.

(ii) /f there exists t2 >_ --Tm such that xm(t) >_ a13-1e-eM for t2

_
t

_
t2 + TM,

then Xm(t) >_ a3-1e-rM for all t >_ t2.
Proof. We prove the result for case (i). The proof of case (ii) follows analogously.

Suppose that there exists t* > tl -b TM such that x,(t*) a-le-TM and xm(t) <
aZ-le-. for t _< t < t*, where &m(t*) >_ O. However, from system (2.2),

Oe--TT,,[Xm(t T(Z)) OZ--le-’m] < 0,

a contradiction.
From this theorem, the following corollary follows immediately.
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866 (. AIELLO H. I. FREEDMAN AND J. WU

COROLLARY 5.2. (i) If m(t) <_ O-le-’’, --TM t 0, then xm(t)
a-le-r for all t O. (ii) If m(t) a-e-rM, --TM t 0, then xm(t)
a- e--M for all t O.

In the ce where we know that x(t) is monotone, then we can show that the
limit t of x(t) lies in a certain bounded interval.

THEOREM 5.3. Suppose that xm(t) is eventually monotonic. Then a-e-TM

limt x(t) -le-.
Pro4 Since x(t) is eventually monotonic and xm(t) is bounded, there exists

0 < 2 < such that limt xm(t) ira, limt ira(t) 0. Hence from system
(2.2), taking the limit superior t , we have that

--’),T(lim sup x(t)+Xm) )0=2, ae - --2,

--’-(lim sup
Thus ff:rn - e t--. so that aft- e-M < m < o]- e-m, prov-
ing the theorem.

We can now state bounds on the eventual behaviour of Xm(t), independent of
admissible initial conditions.

THEOREM 5.4. Let (xi(t),x,(t)) be a solution of system (2.2). Then

(5.1) oz-le-’rTM liminfxm(t) <_ lim supxm(t) <_ O-le-’rTm.

Proof. If xm(t) is eventually monotonic, the result follows from Theorem 5.3.
Hence we assume that xm(t) is oscillatory. We prove that limsuPt_Xm(t <_
a-le-’TM The other inequality follows analogously.

Define the sequence {tk} as those times for which xm(t) achieves a maximum,
i.e., :rn (tk O, rn (tk < 0. Define

(5.2) . lim sup{xm (tk) }.

Then 0 < 2m < c and limsupt_. xm(t) 5c,.
If m <_ a/-leTM we are done. Hence assume that

(5.3) 2m > al-leTM.

Then from system (2.2), 0 m(tk) ae-r(Zk)Xm(tk- T(Zk)) --X2m(tk), where
+

We now choose a subsequence of {tk}, relabelled as {tk} so that limk__, Xm(tk)
:m and tk+l >_ tk -’TM. We then choose a further subsequence of {tk }, again relabelled
{tk} so that limk__, zk 5, where 5 limSuPk_zk.

Now let X#m limsup_xm(t T(Zk)) for this subsequence {tk}. We choose a
final subsequence of {tk }, once again relabelled {tk }, so that limk_ x,(tk- T(Zk))
X.

Now from the definition of Tm and inequality (5.3), we get, taking the limit as

0 <

If x _< m, we have a contradiction.
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ANALYSIS OF A MODEL 867

Hence we assume that X#m > m. Then we have that for each k, we can choose a
value ti such that Cm(ti) O, {m(ti) < 0, and limsupi_xm(ti) >_ x > m. This,
however, contradicts the definition of &m in expression (5.2), so X#m > m cannot be
true. This eliminates the last possibility and proves the theorem.

We can now use the above estimates to obtain estimates on the xi. We first note
that we can find T() > 0 to large that

(5.4)

for given e > 0 whenever t _> T. Then the first equation of (2.2) can be written in the
integral equation form

Although (5.5) is valid for all t, we will utilize it only for those t >_ T + TM.
THEOREM 5.5. Let (xi(t),xm(t)) be a solution of system (2.2). Then

limsup xi(t) <_ Ol2-l/-l(e-Tm e--2/TM).

Proof. Utilizing (5.4) and (5.5), we get for t >_ T + TM

+ +

where e > 0 is arbitrary. Hence from (5.6) we get that

limsup xi(t) <_ limsup e-(t-T)xi(T)

+ limsup ae-(t-T)[a-le-r., a-le-2TM

+ e(1 + e-’)]

+ ce(1 + e-’)] lim sup e-(t-T)
t---*

")’--1 [OZ2--I(e--’T’ e-2’’r) -- O(1 -Jr" e-7"r)](1 lim e-7(t-T))
O2-’)’-1 (e-’r’ e-2’ -t- c’)’-ls(1 -t- e-’-).

Since e is arbitrary, the theorem is proved.
Similarly, we can obtain a lower bound on xi(t).
THEOREM 5.6. Let TM < 2Tm. Let (xi(t),xm(t)) be a solution of system (2.2).

Then liminft__.xi(t) >_ a2-l/-l(e-TrM e-27TM ).
Proof. The proof for this theorem is similar to the proof of Theorem 5.5.
In this theorem for the lower bound, we require that TM < 2Tm for the lower

bound to be positive, otherwise we do not have any new information. That is, if
TM Tm > Tm (too large a spread), we are unable to obtain an explicit limiting lower
bound on xi(t).
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868 G. AIELLO H. I. FREEDMAN AND J. WU

6. Discussion. The main purpose of this paper is to analyze a model of stage-
structured population growth where the age to maturity is state dependent. It is
found that there always exists a positive equilibrium, but, unlike the constant delay
case, this equilibrium may not be unique. Criteria for uniqueness are obtained, as well
as criteria for local asymptotic stability.

In 5, we obtained explicit bounds for the eventual behavior of x(t) and xm(t).
These bounds were in terms of Tm and ’U. In the case that TM Tin, i.e., in the case
where our system reduces to the constant delay case, then limt- (xi(t), xm(t)) exists
and tends to (&i, &m) (which is unique), thus incorporating the results of [2]. We should
note that Theorem 5.6 allows for the possibility of the number of immatures xi(t), to
become arbitrarily small if TM < 2Tm. Neither our requirement that T(z) < 4//C2 to
avoid retrogression of matures into immatures, nor our requirement for Theorem 3.5

ft--’rmthat m L--TIn eBds > Am o-r. (a2T’(Z)/(4 a2T’(Z)))esd8 for all t precludes TM
from being less than 2Tin, since for any difference TM --7"m, Tt(Z) can still be made as
small as needed to satisfy our requirements for a valid model. In any case, Theorem 3.6
assures us that we can find admissible initial functions for a wide variety of cases.

There is a connection between the various criteria for uniqueness and stability
of equilibria, as well as the criterion for avoidance of retrogression of immatures into
matures. Namely, the requirement that T(z) < 4-2 is involved in all three. Bio-
logically, this says that the change in length of time to maturity cannot change too
rapidly as the population density changes. This is, of course, biologically reasonable.

We should also note that the requirement that T’(Z) < 4//c2 to avoid retrogres-
sion and the requirement that

5m eBds > Am (a2T’(Z)/(4- a2"(z)))eds

in Theorem 3.5 that gives sufficient conditions for the positivity of xi(t) are linked;
as T’(Z) approaches the value 4//c2 where retrogression of mature and immatures
occurs, the set of admissible initial functions allowed by that theorem approaches the
null set.

Acknowledgments. The authors thank J. F. Addicott for supplying a refer-
ence and two anonymous referees whose comments led to a considerably improved
manuscript.
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