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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC
DELAY*

H. I. FREEDMAN? AND JIANHONG WU:I:

Abstract. A single-species population growth model is considered, where the growth rate response to
changes in its density has a periodic delay. It is shown that if the self-inhibition rate is sufficiently large
compared to the reproduction rate, then the model equation has a globally asymptotically stable positive
periodic solution.
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1. Introduction. The main focus of this paper is on a model of single-species
population growth which incorporates a periodic time delay in the birth process. In
particular, we show the existence of a stable periodic solution of a retarded functional
differential equation to be given later which has the feature of periodicity right in the
time delay. To the best of our knowledge, this is the first time equations with such
delays have been considered in the literature.

This paper is motivated by the laboratory work of the group led by U. Halbach
(see [4], [21]-[24], [40], [44] and the references therein) on rotifers. They noticed that
in laboratory populations, periodic phenomena due to time delays in gestation occurred,
and that the length of delay was a function of the controlled temperature. These
periodic variations in population numbers also occurred when the temperature itself
was varied periodically (thereby inducing a periodic delay) on a daily basis. This led
us to a conjecture that periodic solutions should exist for single species delay models
with periodic delay.

Previous work has shown that periodic oscillations could occur in autonomous
delay differential equations [5], [6], [10], [13], [15], [16], [20], [25], [29]-[31], [35],
[37], [40], [43], [45], as well as delay equations for population growth in fluctuating
environments [2], [9], [11], [12], [14], [19], [28], [32]-[34], [39], [45]. However,
periodic oscillations are not automatic in single-species models with delay as shown
in [3], [7], [8], [18].

In the case where the delay in growth rate is a constant, the mechanism causing
oscillation is for the delay to be so significant in terms of the time length of the delay
or the magnitude of the delayed effects that the positive equilibrium point (carrying
capacity) loses its stability. For details, we refer to [13] and the references therein.

The technique used in the analysis of our model is to first show that due to the
periodicity of the growth rate and of the delay, there exists a positive periodic carrying
capacity which is not a solution, but yields a globally stable periodic oscillation in the
species density. In contrast with the aforementioned research for the constant delay
case, we find that the periodicity in various growth rates and in the delay can cause
stable oscillation of the species density about the carrying capacity even when the
delay is small.
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690 H.I. FREEDMAN AND JIANHONG WU

The idea here is to then treat the periodic oscillation as being generated from the
periodic carrying capacity by proving the existence of an attracting region containing
the carrying capacity.

The organization of this paper is as follows. Model equations and our major
results are described in 2. We will state our results for the linear growth rate case in
detail and briefly indicate the possible extension to the nonlinear growth rate case.
The proofs of the theorems are contained in 3. Under the assumption of the existence
of a periodic carrying capacity, we construct a Lyapunov function about the carrying
capacity and employ the Lyapunov-Razumikhin technique to obtain an attracting
region. Section 4 contains a brief discussion of our results and some related open
problems.

2. Model equations and main results.
2.1. Linear growth rates. We first consider the following single-species model

involving a discrete periodic delay

(2.1) (t) x(t)[a(t) b( t)x( t) + c( t)x( "r( t))],

where the net birth rate a(t), the self-inhibition rate b(t), the reproduction rate c(t),
and the delay r(t) are continuously differentiable, w-periodic functions, and a(t)> 0,
b(t) > 0, c(t) >_- 0, z(t) -> 0 for R (-, +o). This model represents the case that
when the population size is small, growth is proportional to the size, and when the
population size is not so small, the positive feedback is a(t)+ c(t)x(t- r(t)) while the
negative feedback is b(t)x(t). Such circumstances can arise when the resources are
plentiful and the reproduction at time is by individuals of at least age z(t) units oftime.

The above model, with constant coefficient and delay, and its variants, has been
utilized by many authors as a model of single species growth (see 18] and the references
therein). The delay in the term c(t)x(t)x(t-z(t)) is a delay due to gestation. Thinking
of small animals such as rotifers (as in the work of Halbach and co-workers mentioned
in the introduction), there is a small delay in the time between final feeding before
reproduction and reproduction. Hence, the reproduction rate has a component which
is proportional to those animals present a short time earlier and those animals currently
present (random mating).

Let z* max,o.,o r( t). It is a well-known fact that for any given q
C([-’*, 0]; R), there exist a (0, ) and a unique solution x(t) x(t; q) of (2.1) on
I-r*, a); that is, x(t) is continuous on I-z*, a), continuously differentiable, and
satisfies (2.1) on (0, a) and x(0)= q(0) on [-z*, 0]. Moreover, if q(t)-> 0 on [-z*, 0],
then x(t) remains nonnegative for all [0, a), and if x is noncontinuable past a and
a < +c, then Ix(t)[-* c as t-* a-.

The following theorem sets forth the principal result of this paper.
THEOREM 2.1. Suppose that the equation

a(t)- b(t)K(t)+ c(t)K(t-z(t)) =0

has a positive, w-periodic, continuously differentiable solution K(t). Then the model
equation (2.1) has a positive w-periodic solution Q( t). Moreover, if b( t) >
e(t)Q(t-r(t))/Q(t) for all t[0, to], then Q(t) is globally asymptotically stable with
respect to positive solutions of (2.1).

Remark 2.1. K(t) represents the carrying capacity of the environment. If all of
the growth rates a, b, and are constant in time, then K a/b-c. In the case where
z is also a constant, it is shown in [18] that the condition b > c guarantees the global
asymptotic stability of the carrying capacity. Our result here indicates that such a
global asymptotic stability holds even when is not a constant.
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS 691

Remark 2.2. In the case where a(t)/(b(t)-c(t)) is not a constant, the carrying
capacity K (t) must be an to-periodic function, and the periodic solution Q(t) obtained
in our results is nonconstant.

Remark 2.3. In the case where b(t) > c(t) for [0, to], by iterating the equation
K(t)=a(t)/b(t)+c(t)/b(t)K(t-r(t)), we can get an explicit expression for K(t)

a(t) co mi(t) a mJ+’(t)
(2.2) /

j=o i=o bo m-(-ti bo mJ+l(t)
where m(t) t, m(t) t-z(t), mi(t)=momi-(t) for t R and i_> 1. It is easy to
see from the formula (2.2) that if a( t)/ b( t) c( t) is not a constant, then the major
role ofthe periodicity ofthe delay is to cause a periodic fluctuation ofthe corresponding
carrying capacity about the carrying capacity which occurs when r is a constant.

Remark 2.4. In applications, it is useful to have an estimate for the location of
the periodic solution Q(t). The proof of this theorem in the next section will provide
a rough estimate of the constants e and M > 0 such that

e <
Q(t)

<-M for t[0, to].

This inequality also indicates that we can regard the periodic oscillation as being
generated from the carrying capacity, in contrast to Cushing’s result [14], where the
periodic oscillation bifurcates from the trivial solution.

There is some experimental evidence [9] which indicates that continuously dis-
tributed delays are more realistic and more accurate than those with instantaneous
time delays. Inspired by this evidence, we consider the following Volterra integro-
differential equation

(2.3) (t)=x(t)[a(t)-b(t)x(t)+Ip(t,s)x(s) ds],
where p(t, s) is a nonnegative continuous function satisfying p(t+to, s+to)=p(t, s)
for -< s _-< < +c, and there exists a constant y > 0 such that

j-(2.4) p(t,t+O) e-dO< for t[0, to].

The above assumptions are motivated and satisfied by the following special delay kernel

(2.5) k(t,s)= 21( .(t-s).exp[ 1 ]" t) --r-- (t--S)

which attains its maximum at s t- r(t) for any fixed t. Therefore, (2.3) represents a
continuously distributed delay analog of the difference-differential equation (2.1) with
periodic discrete delay.

Let

lim eVq(0) exists}Cr q e C((-, 0]; R)
o-,-

with

sup el(0)l, c,

and define F: R x Cv - R by

F( t, tp)= q(O)[a(t)-b(t)q(O)+ IoP( t, t+ O)q( O) ao] (t, q)6 R x Cv.
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692 H.I. FREEDMAN AND JIANHONG WU

Then (Cr, l" [c) is a Banach space which satisfies all of the fundamental axioms
described in [26], and F is a continuous functional which is Lipschitz in q Cv. We
notice that (2.3) can be reformulated as (t)= F(t, x,). Therefore, by Theorems 2.1-2.5
of [26], for each qCr there exists a:= c(q)>0 and a unique solution x(t; q) of
(2.3) defined on (-o,a) with Xo=q, and the mapping (t,q)(0, a(q))xCc__
R x Cr- x(q) Cr is continuous. Moreover, if x(t; q) is noncontinuable past a(q)
and c(q) <oe, then lim_,,-Ix(t;

The following result represents an analog of Theorem 2.1 in the case of distributed
delay.

THEOREM 2.2. Assume that there exists a continuously differentiable positive
periodic function K (t) satisfying

a(t)-b(t)K(t)+ f" p(t,s)K(s) ds=O, tR;
d-

then the model equation (2.3) has a positive to-periodic solution Q(t). Moreover, if

b(t)> f p(t, s)
Q(s)
O(t)

ds, tR,

then Q(t) is globally asymptotically stable with respect to positive solutions of (2.3) in
the state space Cv.

2.2. Nonlinear growth rates. In this part, we indicate a possible extension of our
previous results to nonlinear growth rates. We consider the following model

(2.6) )(t) x(t)[-D(t, x(t)) + B(t, xt)],

where the death rate D(t, x) is continuous in (t, x) R2, to-periodic in t, increasing
and continuously differentiable in x; the birth rate B(t, q) is continuous in (t,
R x C([-r, 0]; R) (r is a constant), continuously differentiable in q C([-r, 0]; R),
and is to-periodic in in the following sense.

(HI) For any continuous to-periodic function x" R --> R, B(t, x,) is to-periodic as
a function of t.

This model represents the case where there is a delay in the per capita birth rate,
whereas the death rate is instantaneous [3], [5]. We assume that all positive feedbacks
are included in the birth processes and any negative feedback is included in the death
rate. Our crucial assumption is the following.

(H2) There exists a positive to-periodic continuously differentiable function K (t)
such that D(t, K(t)) B(t, Kt) for R.

With this assumption, Theorem 2.1 can be modified so as to apply to our nonlinear
case.

THEOREM 2.3. Suppose that
(i) (HI)-(H2) are satisfied.
(ii) For all [0, to ], we have

(H3) inf Dx( t, x) sup liB,(t, q)ll .maxoo,,,3 K(0)>0
/ K(t)

where IIB,(t, qg)l denotes the operator norm of the bounded linear operator B,(t, 99)"
C- C.

(iii) There exists a constant 0 such that for every o (0, ), andfor any q C
with q(s)_-> q(O) 6o, we have B(t, q)-D(t, q(O))->_O.
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS 693

Then the model equation (2.6) has a positive w-periodic solution Q( t). Moreover, if

inf Dx( t, x) sup Iln(t, ,;)11 maxoto,,o] Q(0)>0
xR ,c Q(t)

for all [0, co], then Q(t) is globally asymptotically stable with respect topositive solutions
of (2.6).

3. Proofs of theorems. In this section, we give detailed proofs for Theorems 2.1
and 2.2 and briefly indicate how to modify these proofs to the nonlinear case.

Let C C([-z*, 0]; R) denote the Banach space of all continuous functions with
the sup-norm

IIp[] sup ]p(O)] for qC.
o [- -*,0]

C+ denotes a subset of C consisting of all nonnegative functions, x(t; q), >=-z*,
C+, denotes the unique solution of equation (2.1) satisfying x(t; q)=q(t) on

[-z*, 0], and x,(q) C is defined as x,(q)(s)=x(t+s; q) for all s [-z*, 0].
LEMMA 3.1. There exists a constant t3 > 0 such that for every o (0, 6), the set

C C+Bo={p "q(0)=>3o forO[-z* 0]}
c implies xt (q) B c for all > O.is invariant, that is, q Bo

Proof We select a constant 6 > 0 such that

inf {a(t) b(t)} > 0.
t[0,to]

CLet 60 (0, 6) and q B be given. We consider the solution x(t) x(t; ) of (2.1).
If at an instant => 0 we have x(s) >-_ x(t) 6 for s z*, t], then [x:(t)]’-< 0.
However, from (2.1) we have

[x2( t)]’ 2x2(t)[a(t) b( t)x( t) + c( t)x( ’( t))]

>- 2x2(t)[a(t) b( t)3o]

>0.

This contradiction indicates that min {mino_.,o] x2(t + 0), 6} is nondecreasing, and
therefore

min{ o[-*,0]min x2(t+O),6}>=min{ 0[-*,o3min
for all >_-0. This completes the proof.

LEMMA 3.2. For any p > 1, we have

px In (px) >= [x In x for all x >- 1

where p- In p.

Proof Let G(x) p In x-ln (px)+(1/x) In p. Then G(1) =0, G(c) =, and

1
G’(x)=-[(p-1)x-ln p]

from which we know that G’(x)>O for x>lnp/(p-1) and G’(x)<O for x<
In p(p- 1). Therefore there exists a unique x*> 1 such that G(x*)=p- 1, G(x)> 1
if x > x* and G(x) < p 1 for x < x*.
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694 H. I. FREEDMAN AND JIANHONG WU

Consider now f(x) (px-ln (px))/(x-ln x). Then

f’(x)
p 1 p In x + In (px) (ln p)/x

(x-ln x)2

p-l-(x)
(x-ln x)2

which implies that f’(x) > 0 if x < x*, and f’(x) < 0 if x > x*. Therefore

f(x) -> min {f( 1 ), f(oo)} min {p In p, p} p In p

for all x->_ 1. This completes the proof.
The following result describes a dissipative property of the equation, where the

existence of an attracting region is essential for our main results.
LEMMA 3.3. Assume that

c(t)
K(t)
K(t-r(t))<b(t) on [0, ,o].

Then

(i) For any >= 6, there exists a constant d := d () > 0 such that for any q C with
6<=q(O)<= on I-r*, 0], we have 3<=x(t; )<=d() for all t->0;

(ii) There exists a constant M >-3 such that for any fl >-3 there is a constant
T= T(fl) > 0 such thatfor any q Cwith6<=q(O)<=flon [-r*, 0] we have 6 <_ x( t;
Mfor all t>- T().

Proof According to the assumptions, we can find a constant p > 1 such that

c(t) }min b(t)-p. .K(t-r(t)) =31>0.
,to,,ol K(t)

For such 3’ > 1, define

2 {M*=-7 max (p-1)c(t) max K()+ + max
o-<_,-<_,o oto.,oa K (t) Jol

Define a continuous map V" R x (0, oo) R by

X X

V(t,X)=K(t----lnK(t) for(t,x)6R(O, oo).

Suppose x(t)= x(t; q) is a solution of (2.1) with minot_**,ol o(0) -> 3. By Lemma 3.1,
x(t) ->_ 3 for all >_- 0, and therefore V(t, x(t)) is well defined and differentiable for
>_-0. Moreover, we have

d--d V(t,x(t))= 1- X(t) J tKit [a(t)-b(t)x(t)+c(t)x(t-r(t))] ------K (t)

_x(t)-K(t) { /(t)}K(t) a(t)-b(t)x(t)+c(t)x(t-r(t))-K(t)
x(t)-K(t) {K (t)

b(t)[x(t) K (t)]

c(t)[x(t-’r(t))- K(t- r(t))]- K(t)
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS 695

Suppose at some t-> 0, we have

V(t+s,x(t+s))<-(p-lnp)V(t,x(t)) fors[--*,0]
and x(t)>= M*. Then by Lemma 3.2, we have

x(t+s)
-In

x(t+s) <px(t) (px(t)
K(t+s--- K(t+s--=K(t-----ln\K(t)]

for all s [-’*, 0]. From the choice of M*, it follows that

x(t) M*
>- >--1,

K(t)-K(t)-
and therefore by the increasing property of the function u- In u for u >= 1, we get

X(t+s) px(t)
for s I--r*, 0].

g(t+s) K(t)

x(t+s)-K(t+s)<=
K(t+s)
K(t)

Hence

for all s [-r*, 0]. This implies that

p[x(t)- K(t)]+(p- 1)K(t+ s)

d
-K(t)-t V(t,x(t))= b(t)[x(t)-K(t)]2-c(t)[x(t)-K(t)][x(t-r(t))-K(t-’(t))]

I(t)
K(t)

-[x(t)-K(t)]

>= b(t)[x(t)-K(t)]2-c(t) .K(t-7"(t)) [x(t)-K(t)]2p
K(t)

I( t)
-(p 1)c(t)K(t- r( t))lx (t) K t) K( t)

[ c(t) ]>-- b(t)-P K(t)’K(t-’(t)) [x(t)-K(t)]

-[(p-1)c(t) oto,o]max K(O)+[K(:l[]lx(t)-K(t)](
>=8,[x(t)-K(t)]2

-[(p-1)c(t) max K(o)+lI;C(t))l]lx(t)-K(t)o[o,o] K(t

1
>=-6lx(t)-K(t)[.
2

[x(t)-K(t)]

That is,

d
V(t,x(t))<__ 1 ix(t)_K(t)l2

dt 2 maxoto,o,l K (0)
whenever V(t + s, x(t + s)) <= (y-ln 3/) V(t, x(t)) for s [-’*, 0] and x(t) >- M*. There-
fore, employing a variation of the standard argument of the uniform boundedness and
uniform ultimate boundedness theorem of Lyapunov-Razumikhim type [25], we can
prove the conclusion with any given constant M > M*.
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696 H. I. FREEDMAN AND JIANHONG WU

The following result from [27] is our major tool used in guaranteeing the existence
of a w-periodic solution.

LEMMA 3.4 (Horn’s fixed-point theorem). Let So c $1 $2 be convex subsets of the
Banaeh space X, with So and $2 compact and SI open relative to S2. Let P $2- X be a
continuous mapping such that, for some integer rn > O,

(a) W(S) S2, 1 <=j <= m- 1,
and

(b) W(S,)So, m<=j<=2m-1.
Then P has a fixed point in So.

Now we are in a position to prove our major results.
Proof of Theorem 2.1. Let M => 6 be given according to (ii) of Lemma 3.3. By (i)

of Lemma 3.3, we can find a constant MI> M+ 1 such that 6-< q(0)-< M+ 1 on
[-r*, 0] implies 6 <-x(t; q)<= M1 for all t>_-0. By (ii) of Lemma 3.3, we can find a
constant T > 0 such that 6 -< q(0) -< M + 1 on [-z*, 0] implies 6 <= x(t; q) <= M for all

>_- T1. Similarly, we can find constants M2 and M3 > 6 such that

on [-r*, 0] implies 6 -< x(t; q) <_- M6 <- q(O) =< .M + 1

for all >= O, and

<-_ ( O) <- M
for all => O.

Define

and

on [-r*, O] implies 6 =< x(t; q) =< M3

L=M sup {a(t)+b(t)M3+c(t)M3}

So={uc; <-(O)<-M+I,I(o)-()ILIO-[ for 0, rt [- r*, 0]},

S={qC;6<-q(0)<Ml+l, lq(0)-q(q)l<-_L[0-rll for0, r/[-r*,0]},

S:={qC;3<-q(0)<-M,lq(0)-q(q)[<-_L[0-rtl for 0, [-r*, 0]}.

As well, define a Poincard map P’S- C by

P(q) xo() for $2.

Then by the uniqueness and continuous dependence of solutions and the periodicity
of a, b, e and z, we have pn() xno (q) for all integers n >= 0, and furthermore P is
a continuous map. Evidently, So c S $2 are convex subsets of the Banach space C,
with So and $2 compact (Arzola-Ascoli’s theorem) and S open relative to $2. Choose
an integer rn > 0 such that mto > T1. Then

PJ(s1) S2 for all j->_ 1

and

W(S)_So for allj=>m.

Now by Horn’s asymptotic fixed point theorem, P has a fixed point in So. That is,
there is a w-periodic solution Q(t) of (2.1) with Q(t)>-6 for t[0, to].

To prove the global asymptotic stability of Q(t) with respect to positive solutions
of (2.1), we note that

lnQ(t) =-b(t)[x(t)-Q(t)]+c(t)[x(t--(t))-Q(t--(t))].
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS 697

Let u(t) x(t) Q(t). We get

In l+Q(t)] =-b(t)u(t)+c(t)u(t-z(t)).

The change of variable

In l + Q( t)]
y( t)

or equivalently,

u(t)--[ey(t)-l]Q(t)

leads to the equation

(3.5) ))(t) -b(t)Q(t)[ey(’)- 1]+ c(t)Q(t-z(t))[ey(t-(t- 1].

Consider the function W(t)--[ey(t)- 1]2 and choose a constant p*> 1 such that

p*c(t)Q(t-z(t))<b(t)O(t) for t[0, to].

If at an instant t_-> 0, we have

W(y(s))<-_p*W(y(t)) for alls[t-z(t),t],

then

d

dt
W(y(t)) -2 eY(t{b(t)Q(t)[ey(’)- 1]2-c(t)Q(t-’(t))[ey(’-(t- 1liey(t)- 1]}

<--2 ey(t){b(t)Q(t)[ey(t- 1]2-p*c(t)Q(t-’(t))[ey(t- 1]2}

<- -2e ey( t)[ ey( t) 1 ]2,

where e=inf,{o,,o{b(t)Q(t)-p*c(t)Q(t-z(t))}>o. Therefore, by the uniform
asymptotic stability theorem of Lyapunov-Razumikhin type, we are assured that the
zero solution of (3.5) is globally uniformly asymptotically stable, that is, the w-periodic
solution Q(t) of (2.1) is uniformly globally asymptotically stable with respect to positive
solutions of (2.1). The proof is completed.

Proof of Theorem 2.2. First of all, using an argument similar to that for Lemma
3.1, we can show that if 6 > 0 is sufficiently small, so that a(t) b(t)6 > 0 for e [0, to],
then for any qe Cv with q(0)_-> 6 for 0_-<0, we have x(t; q)>=6 for t=>0.

Let Bc={eC;supo=o[(o)[<}. We next prove that for any (=> there
exists d()>0 such that if qeBCv is given, so that 6-<q(0)=<:e-r for 0-<_0, then

_<- x(t; q) <- d (q) for >= 0. In fact, for the function V" R x (0, ) R defined by
V(t,x)=(x/K(t))-ln (x/K(t)), and for x(t):=x(t; q), we have

d x(t)-K(t)
d---t V(t, x(t))=

K(t)

b(t)[x(t)-K(t)]- p(t,s)[x(s)-K(s)] dS-K(t)
Since u -In u is an increasing and unbounded function for u -> 1, we can find a constant
Nl->max_<_(o)__< V(O, q(O)) such that if max{N1, V(s,x(s))}<=V(t,x(t)) for s<=t,
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698 H.I. FREEDMAN AND JIANHONG WU

then max {N2, x(s)/K(s)}<-x(t)/K(t) for s <- t. where

l2 t)[/K t)
N: max

tto.,ol b(t)-t_op(t, s)[K(s)/K(t)] ds

Therefore, if max {N1, V(s,x(s))} <- V(t,x(t)) for s <- t,
(K(s)/K(t))[x(t)-K(t)] for s<-_t, and

then x(s)-K(s)<=

d
d-- V(t, K(t))

K(t)
b(t)- oP(t,s)ds [x(t)-K(t)]2-

Ig(t)l
K(t)

Therefore, V(t, x(t))<=N1 for t_>0, which implies the existence of d(:).
We then show that there exists a constant M => 6 such that for any :->_ 6 there is

a constant T(sC)>0 such that if qeBCv and 6-<q(0)-<sCe-V for 0_-<0, then 3_-<

x(t; q)<-M for all >= T(). In fact, from the condition (2.4), for any q >-3, we can
choose q(:) > 0 such that

f (e) p( t, + O) e- dO <= + d(q) + IKolv +maxo<______o K(s)’
t[O, o].

Therefore,

f )p(t, t+O)lx(t+o)-g(t+o)l dO

<-- p(t, t+ O) e-’ dO +lgol ,

p(t, + O) e-v dO [su<_p_ [x(t + s) K(t + s)[ ev(t+s) e-’It

+-t_-<s_-<oSUp Ix(t+s)-K(t+s)l 1
+ d()+ o=<,_-<.,max K(s)]

We now find a constant p > 1 such that

{ f K(S) ds}min b(t)-p p(t, s) ..
te[o,o]

and define

M*=-2- l+(p-1) sup p(t,s)K(s) ds+
o<=<=o K(t

Then using an argument similar to that for Lemma 3.3, we can see that if at some
t>-O, V(s,x(s))<-(p-lnp)V(t,x(t)) for se[t-q(), t] and x(t)>-M*, then

K(s)
x(s)-K(s) <- p[x(t)-K(t)]+(p-1)K(s)

K(t)
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PERIODIC SOLUTIONS OF SINGLE-SPECIES MODELS 699

for s q(), t], and hence

-K(t)d V(t,x(t))>=b(t)[x(t)-K(t)]2- P(t,s)[x(s)-K(s)] dslx(t)-K(t)l

K(s)
p(t,s) K(t) O[X(t)-K(t)]2 as

t--q()

p(t,s)(p-1)K(s)lx(t)-K(t)l ds
t--q()

1[ t)l Ix(t) K t)l
K(t)

> 1 12----f lx( t) K t)

Therefore, employing a variation of the standard argument of the uniform ultimate
boundedness theorem of Lyapunov-Razumikhin type [25], we can prove the existence
of M.

The rest of the proof is similar to the proofs for Theorem 2.1 and Theorem 3.1
of 1 ], and therefore is omitted.

Proof of Theorem 2.3. We construct a Lyapunov function V(t,x)=
(x/K(t))-ln (x/K(t)) for (t, x) R x (0, ), and select a constant p >0 such that

xinf/ Dx(t,x)-p sup IIn(t, )11 maxoto,,o K(0)> 61>0,
c K(t)

where 6 > 0 is a constant. It is easy to obtain

d
V(t,x(t))=

x(t)-K(t)
d--- K(t) [D(t,x(t))_B(t,x,)]_x(t)K2( )K(t) (t)

x(t)-K(t)
[D(t, x(t))- O(t, K(t))]

K(t)

x(t)-K(t)+ [B(t, xt)-B(t, Kt)]
x(t) K(t) i(t)

K(t) K2(t)
[x(t)-K(t)]2

<- inf Dx(t,x)
K(t) xR

Therefore, if

and

+sup liB.(t,  o)11 [x(t)-K(t) x(t)-K(t) I(t).
c K(t)

IIx,-K, II- K2(t)

V(t+s,x(t+s))<=(p-lnp)V(t,x(t)) fors[-’*,0]

x(t) > M*=2-- sup (p-l) sup liB.(t, q)ll max K(O)+
61 to,,o c ,o,, K (t)

+ max K(O).
o[0,o]

dV( t, x( t))
< Ix(t)-K(t)l2.

dt 2 maxoto,,, K (0)

Then by Lemma 3.2, we can obtainD
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700 H. I. FREEDMAN AND JIANHONG WU

Hence results in Lemma 3.3 are valid. The rest of the proof is exactly the same as that
for Theorem 2.1 and therefore is omitted.

Discussion. In this paper we have considered several single-species models with
time delays where both the coefficients and the delays are periodic functions. These
models are based on laboratory evidence in observing the population growth of rotifers.

The model given by (2.1) is of retarded type, whereas the model described by
(2.3) incorporates a distributed periodic delay. However, both of these are of Lotka-
Volterra type. It would be of interest to consider equations of single-species which are
more general. Unfortunately, we are not able to do so at this time, since some of the
technical steps in our method of proofs of the existence of positive periodic solutions
require the Lotka-Volterra format.

It would also be of interest to consider higher-dimensional systems with periodic
delays, representing predator-prey or competitive systems. Again, this is likely to be
considerably more difficult, and we leave this for future work.

Acknowletlgment. The authors thank the referees for their valuable comments and
suggestions which led to a substantial improvement of our original manuscript.
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