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1. INTRODUCTION 

ONE PROBLEM of recent interest in the theory of mathematical ecology is the attempt to describe 
the effect of the spatiotemporal structure of a heterogeneous environment on the growth and 
diffusion of a population. Most single-species models that have been analysed in the literature 
(cf. [5,6]) have a constant diffusion coefficient and a constant carrying capacity of the environ- 
ment. However, except for a controlled laboratory environment, the carrying capacity is 
usually varying in space and time. For details, we refer to [7-9, 1 l-141 and references therein, 

Several methods can be utilized to describe this environmental heterogeneity and its effect on 
the growth and diffusion of the population by a reaction-diffusion equation. One method is to 
allow the diffusion coefficient and reaction term to depend on spatial position. For example, 
this method has recently been used by Cantrell and Cosner [l] to show the existence of a 
positive steady-state solution under appropriate assumptions in the case of logistic growth, 
where the diffusion is held constant, but the carrying capacity continually varies in the reaction 
term. 

A second method, which is the one adopted in this paper, is to approximate the environment 
by a sequence of patches, in each of which the diffusion rate and carrying capacity are 
constants, not necessarily the same from patch to patch. This technique was utilized in [7] for 
the case of two patches, where the existence of a positive, monotonic, asymptotically stable 
steady state solution was proved constructively. 

However, there are many situations arising in nature where two patches are inadequate for 
approximating the environmental variation. In [16] it is noted that since the opening of the 
Suez Canal, there has been a steady diffusion of certain plankton species into the Red Sea, 
which has gradually spread down its length. Since these plankton form a food basis for many 
fish and other populations, this has led to a spatially monotonically decreasing carrying capacity 
from very high to very low levels. In [lo], a study of forest degradation in the Doon Valley, 
India, due to limestone quarries and other activities, was reported. The degradation was more 
severe for forest biomass closer to the quarries than for the biomass farther away due to dust 
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settlement, human and cattle activity, etc. This leads to a spatially monotonically increasing 
carrying capacity. One also has carrying capacities flanked on both sides by higher or lower 
values, e.g. if forest land is interrupted along a linear transect by a stream, or if grazing land 
along a transect is interrupted by a burn or a change in soil conditions. In such circumstances, 
a minimum of three patches is needed to approximate the spatially changing environment. 

In this paper we propose a reaction-diffusion model of population growth in three patches 
and analyse the existence, piecewise monotonicity and stability of the steady states. We will 
show that there exist positive steady states no matter what the patch configuration. The 
methods utilized in [7] do not apply here. We require a topological technique. In the case of 
reservoir boundary conditions, we give sufficiency criteria for these steady states to be piecewise 
monotonic, asymptotically stable, and indicate how they may be constructed. 

In the two-patch case discussed in [7], several types of boundary conditions were considered, 
reservoir and no flux. In this paper we discuss only reservoir boundary conditions. This 
corresponds to a biological situation where spatially, the changes occur over a particular region, 
outside the region the environments are relatively constant over large distances. The analysis 
required to analyse this case is already lengthy. The case of no-flux boundary conditions, 
corresponding to hostile conditions outside the considered environment, is reserved for a future 
paper. It should also be mentioned that our theory can be easily extended to the corresponding 
n-patch model. 

The paper is organized as follows. In Section 2, we describe the reaction-diffusion equation 
for a single-species population diffusing in a three-patch environment. Section 3 gives an 
existence proof and local asymptotic stability analysis of a steady state solution by using a 
topological transversality theorem, an a priori bound technique and the energy function 
method. Sections 4 and 5 are devoted to constructive proofs of piecewise monotonic solutions 
in the case of the middle carrying capacity being greater or less than the others, and in the case 
of strictly increasing or decreasing carrying capacities in patches, respectively. The proof is 
based on a shooting type argument and indicates a nonuniform distribution of populations 
accumulating in the most favourable environment. Section 6 contains a brief discussion of our 
results and some relevant biological implications. 

2. THE MODEL 

We consider a single-species population diffusing in a homogeneous three-patch environ- 
ment. Assume that the ith path lies along the spatial length Li_i I x I Li, i = 1,2,3, Lo = 0. 
Let Ni(X, t) denote the population density at point x and time t in the ith patch, Di > 0 the 
diffusion coefficient of Ni in the ith patch, and gi (Ni) the specific growth rate of Ni. Then the 
evolution of this population is described by the following system of autonomous reaction- 
diffusion equations 

gNi(x, t, = Di$N,(x, t, + Ni(X9 t>gi(N,(X, t)>, 

t 2 0, Li_l 5 X I Li, i = 1,2,3. 
(2.1) 

We assume gi, i = 1,2,3, satisfies the following standard assumptions (cf. [6, Chapter 11): 

(II) gi E C’([O, co), R); g,(O) > 0, gf(Ni) < 0 for all Ni 2 0, and there exists 

Ki > 0 such that gi(Ki) = 0. 
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To specify the solutions, we assume the following initial distribution 

Ni(X, 0) = V;(X), Lj_l I X I Li (2.2) 

and the following boundary (reservoir) condition 

N,(O, 0 = K, , N,(L,, t) = KJ, tro (2.3) 

where vi E C([Li_, , Li], R) and satisfies the matching conditions vi(O) = K, , q3(L,) = K3. 
By a solution of the initial-boundary value problem (2.1)-(2.3), we mean a function N(x, t), 

O~x~L,,t?O,oftheform 

N(x* t, = Ni(X, t), Li_l I X I Li, i= 1,2,3 

such that Ni(X, t) satisfies the ith component of system (2.1) on Li_l 5 x I Li, the initial and 
boundary value conditions (2.2) and (2.3), and the following continuous flux matching 
condition at the interface: 

Nl(Ll? 0 = &Wl, 0, ML,, 0 = N&,0, t L 0, (2.4) 

Dl $,N,(Ll, 0 = D, &&(Ll, 0, Dz$WL,, 0 = D&Wz, 0, t 1 0. (2.5) 

In the case of no diffusion (Di = 0 for i = 1,2,3), the behaviour of solutions of our 
models are well known [6]. At each x in the ith patch, Ni(x, t) + Ki as t + 00. Therefore, 
if K, = K, = K3, then the unique positive equilibrium is globally asymptotically stable. If 

min Ki # max Ki, then a solution N(x, t) satisfying the continuous flux matching condition 
lsis3 lsic3 

(2.3) is impossible. For details, we refer to [6]. 
In the case of diffusion, stable patterns may or may not exist, depending on whether the 

environment is heterogeneous or homogeneous. For the homogeneous environment, Casten 
and Holland [2] and Chafee [3] have demonstrated that no stable, nonuniform steady-state 
solution exists. However, for a single-species population diffusing in a two-patch environment 
(K, = K, # K, or K, # K2 = KS), Freedman et al. [7] proved the existence of a positive, 
monotonic, continuous and asymptotically stable steady-state solution with continuous flux. 

We are interested here in a heterogeneous environment consisting of three patches, that is, 
K, # K2 # K3. For the sake of simplifying the presentation, we distinguish the following cases: 

Casel.K,<K,<K,. 
Case 2. K3 -c K2 < K, . 
Case 3. Max(K, , KJ < K2. 
Case 4. K, < min(K,, K,). 

In cases 1 and 2 the carrying capacities of successive patches are monotonically increasing or 
decreasing. We will prove that there exists a positive, monotonic, continuous, steady-state 
solution with continuous flux which is asymptotically stable. In cases 3 and 4, the mono- 
tonicities of carrying capacities of successive patches change. We will show that there exists a 
positive, piecewise monotonic, continuous, steady-state solution with continuous flux which is 
asymptotically stable. 
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3.EXISTENCEANDSTABILITYOFSTEADY-STATESOLUTIONS 

In this section, we employ the topological transversality theorem, an apriori bound technique 
and the energy function method to establish the existence and (local) stability of steady-state 
solutions. The main idea in proving the existence is to reformulate the existence problem of 
steady-state solutions as a fixed point problem of a completely continuous map. By embedding 
the steady-state equation in a family of equations, we obtain a series of homotopies from the 
aforementioned completely continuous map to a relatively simpler map which corresponds to 
a steady-state equation of an essentially “two-patch” problem. In this way, we reduce our 
“three-patch” problem to a “two-patch” problem. The same technique is also applied to 
reduce the “two-patch” problem to a “one-patch” problem and therefore the existence of a 
steady-state solution for the “three-patch” problem follows from the existence of a solution 
for a “one-patch” problem by the topological transversality theorem due to Dugunji and 
Granas (cf. [4]) described as follows: let B denote a Banach space and C a fixed closed convex 
subset of B. For any given pair of closed bounded subsets, A, X C_ B such that A E X, we 
denote the class X(X, A) to be the class of all maps F: X + C such that F is completely 
continuous and is fixed point free in A, i.e. x # F(x) for all x E A. A map N: X x [0, 1] -+ C 
is said to be a homotopy in X(X, A) provided that H E X(X x [0, 11, A x [0, 11) and 
Ht := H(- , t) E X(X, A) for all t E [0, 11. Maps F, G E X(X, A) are called homotopic if there 
exists a homotopy H in X(X, A) such that Ho = F and HI = G. A map F E X(X, A) is called 
essential if every map G E X(X, A) with G], = FIA has a fixed point in X. The following 
topological transversality theorem and the simple criterion of essential maps will be repeatedly 
used throughout this paper. 

TOPOLOGICAL TRANSVERSALITY THEOREM. Suppose that F, G are homotopic in X(X, A). Then F 
is essential iff G is essential. 

LEMMA 3.1. Let U be a bounded open subset of C, x0 E C and x0 $ aU. A constant map 
U --f (x0] is essential in X(U, au) iff x0 E U. 

In order to use the topological transversality theorem to establish the existence of a steady- 
state solution to problems (2.1)-(2.3) subject to the matching condition (2.4)-(2.5), we consider 
the following family of problems 

L, 5x5 L,, 

( 4$w + @4g,(4(x)) = 0, Lzs’xsL3, 

u,(O) = K,, +(Ld = KJ, 

%(L,) = %(L,), &(Lz) = u,(L,), 

(3.1), 
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where, and in what follows, Db = (1 - A)Di + ~Dj, g; = (1 - A)g, + ~gj for i, j = 1,2, 3, and 
A E [O, 11. 

Let K = min(K, , K2, KS) and K = maxlKi , K,, KJ and choose E > 0 such that K - E > 0. 
Then we have the following a priori bounds for solutions of the problem (3. 1)x. 

LEMMA 3.2. There exist constants A4ji and M/‘,, i = 1, 2, 3, such that if ,l E [0, l] is a given 
number and (u, , u2, u,) is a solution of (3.1), with K - E 5 #i(x) 5 K + E for x E [Li_l, Li] 
and i = 1, 2, 3, then K I Ui (X) I K, 1 (d/dr)ui(X) 1 I Mil and 1 (d2/dX2)Ui(x)I 5 ZVi2 for 
XE[L~_~,L,] andi= 1,2,3. 

Proof. We first prove the conclusion K I Ui(X) I I? for the case of K, I K, I K3. Other 
cases can be treated analogously. 

In the case of K, I K, I K3, we claim that (d/dx)u,(O) 2 0. For otherwise, if 

(d/dx)u,(O) < 0, then u,(x) < K, for x > 0 and close to 0. Noting that D,(d2/dx2)u1(x) = 

-ul(x)gl(ul(x)) and g,(u,) > 0 for 0 I u1 < K,, we get D,(d2/dx2)u,(x) < 0, and thus 
(d/dx)u,(x) 5 (d/dx)u,(O) < 0, which implies that ui(x) < K, on (0, L1]. By the matching 
condition, we get (d/dx)u,(L,) = (D1/D:2)(d/dx)u1(L1) < 0 and u2(LI) = u,(L,) < K,. 

Repeating the above argument for u2(x), we can prove that u2(x) < K, and (d/dx)u,(x) < 0 for 
x E [L, , L2]. Again by the matching condition u3(L2) = uz(L2) < K, and (d/dx)u,(L2) = 
(Dt2/D3)(d/dx)u2(L2) < 0, and by repeating the above argument for u,(x), we get that 
u,(x) < K, for x E [L2, L3] which contradicts the fact that u,(L,) = K3 2 K, . 

Therefore, (d/dx)u,(O) 1 0. Noting that D,(d2/dx2)U1(x) = -ui(x)gi(ui(x)) and g,(u,) < 0 
for u 2 K, , we can conclude that (d2/dx2)U,(x) 2 0, (d/dx)u,(x) 1 (d/dx)u,(O) =_ 0 and 
ui(x) L K, for all x E [0, L,]. Modifying the above argument, one can prove that ur(x) I K3 

for x E [0, L,] and K, I ui(x) I K3 for i = 2, 3 and x E [Li_l , Li]. 

We now prove the conclusion concerning the derivative of u2(x). Similar estimates for 
ui(x) and Us can be obtained analogously. By (d2/dx2)u2(x) = (D~2)-1u2(x)g~2(u2(x)), we 

can easily verify that l(d2/dX2)U2(x)] I iVi2 for x E [L, , L,], where Mi2 = A2 D;,‘, A, = 

K_-EEa2R+E l~21(lgI@2)l + lg2(~2)l)y and Di2 = t min[D,, D2). On the other hand, by the 

well-kiown mean value theorem, there exists c E (L, , L,) such that 

K + e - (K - e) 2 Iu2G) - u2w = 

from which it follows that 

Therefore, for any x E [L, , L2], we have 

completing the proof. 
Similarly, one can prove the following lemma. 
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LEMMA 3.3. There exist constants A4; and Mi for i = 1,2,3 such that if (ur , u2, uj) is a 
solution of the following problem 

( D, g2 ax) + ~i(Xk,(Ui(X)) = 0, Li_1 I X I Li, i = 1,2, 

(3.2), 

satisfying K - & 5 Ui(x) I K + .s for x~[Li_,,Li] and i= 1,2,3, then Ksu~(X)IR, 
I(d/dX)Ui(X)l I Mi”, and l(d’/dX’)Ui(X)I ~M~forx~[Li_r,Li]andi= 1,2,3. 

LEMMA 3.4. There exist constants MA 
solution of the following problem 

and A4i for i = 1,2, 3 such that if (ur , u2, u3) is a 

DI $ui(X) + Aui(x)g,(ui(x)) = 0, Li_1 I X I Li, i = 1,2,3, 

%@I = K,, wd = K,, 

%(L,) = &(LI), u2(L2) = %(L2), 
(3.3), 

+x %(L,) = g u,(L,), $v,(L,) = -&(L,) 

satisfying K - E I Ui(X) I Z? + E for x E [Li_ly Li] and i = 1,2, 3, then K 5 ui(x) I Z?, 
1 (d/dX)Ui (X) 1 s iLff1 and l(d2/dx2)~i(x)I I MA for x E [Li_, , Li] and i = 1,2, 3. 

In what follows, for any U: [0, L3] + R, we denote Ui = ulILi_l,Lil for i = 1,2,3, and write 
u = (ur , u2, ug). Let 

B = (U E C([O, L,], R); Ui E C2([Li_l, Li], R), i = 1, 2, 31. 

Evidently, N is a Banach space with a norm 

(3 -4) 

To obtain a fixed point reformulation of the existence problem of steady state solutions 
to (2.1)-(2.3) subject to matching conditions (2.4)-(2.5), for any given F = (FI, F2, F3) E Y 
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and ,I E [0, 11, we consider the following problem 

ID d’u,(X) 
~ = F,(x), l dx2 

OsxrL,, 

Dx d2W) 
___ = K(x), 12 &2 

L, IXSL,, 

D d2W) 
___ = F3ch 

3 dx2 
L2SXlL3, 

u,(O) = K, 9 u3W3) = K,, 

UlW = ~2&), u2(L2) = u3(L2), 

523 

(3.5)A 

='t, -& ~2652) = 03 $ ~3652). 

LEMMA 3.5. For any F = (Fl , F, , F3) E Y, there exists one and only one solution 
p(F) = (pIA( ,uczx(F), Pan) E B of (3.5),, explicitly defined as follows: 

,un(F)(x) = K, + K(F)x + $ 
x s 

11’ FM) de b, OIXSL,, 
1 0 0 

p2x(FK4 = PC,~(F)(LA + $2 & ~cnVW,)(x - LJ 

P~F,UW~ = ~2x(FW2) + D$2 &2dW2)(X - L,) 
3 

1 X S 

+D s i 
F,(B) de ds, L2SXSL3, 

3 L2 Lz 

M,(F) = [L, + D,(L, - L,)(@,)-’ + D,(L3 - L,)D;‘]-‘. 

1 

1’ 

LZ 
-- 

D 
3 Ll 

F,celdecL, - Ld - $ {~;~:,F3celdeds]. 

The proof is a direct verification, and is therefore omitted. 
According to the above result, one can easily show that u = (u, , u2, u,) is a solution to (3. 1)x 

iff u is a fixed point of the map H,: B + B defined by 

H,(u) = (,%(-u,gr(u,)), ~2x(-u2d2(~2)), ~3x(-u,g,(u,))h 
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By direct verification, we can show that there exist constants Ai, i = 1,2,3, j = 0, 1,2, such 
that if K - E I q(x) I Z? + E for x E [Lj_1, Li] and i = 1,2,3, then 

for j = 0, 1,2 and i = 1, 3. 
Let 

forxE[L,_,,L,]andi= 1,2,3 ‘( 

where 
forxEIL,_,,Li]andi= 1,2,3 , 

1 
Mu = max(Mij, Mz, Mij, i,j = 1,2. 

Then H,(X) E C, for all A E [0, 11. Let H: X x [0, l] + C, be defined by H(u, A) = H,(U). 
We have the following lemma. 

LEMMA 3.6. The map H: X x [0, l] + C, is a completely continuous homotopy between Ho 
and H, in X(X, ax). 

Proof. For any u E X, we have 

2 Lh-~lg,w)(x) = ; $ [u,(x)g,(u,(x))] 
I I 1 

5 $ hh@l(X))l + lW)l lg;wx))Ill4w 
1 

1 
I- 

D, K-E ;;: R+E 
[h(Gl + bd k;(dlW,, + 1) < 03 

for x E [0, L,]. Likewise, we can prove 

3 
$ Pzx(-~,g:,(~,))(x) 

1 
I- max 

012 K-E 5 282 5 K+& []gr@z)I + Is&+)1 + lu2](]gi(uz)l + k(d)lG% + 1) < 00 

for x E [L,,L,] and 

max 
D3 K-E s u3 s R+E 

[lg&)] + 1~31 k$WhM, + 1) < m 

for x E [L2, L,]. Therefore H(X x [0, 11) is relatively compact in Cr. 
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We note that for any A E [0, 11, u is a fixed point of H,: X -+ C, iff u is a solution to 
(3.1),. By lemma 3.2, I(d/dx)ui(x)I 5 M/t < &fit + 1, l(d’/dX’)Ui(X)I 5 MA < Mi2 + 1 and 
K 5 Ui(X) I I? for x E [Li_l, Li] and i = 1,2, 3. Therefore u $ 8X. This proves that H is a 
completely continuous homotopy between H,, and HI. 

By the topological transversality theorem, HI is essential iff Ho is essential. We note that if 
A = 0, then (3.1), reduces to the following essential “two-patch” problem 

( Dl $j uitxl + ui(x)gl(ui(x)) = O, Li_l CX~ Li, i= 1,2, 

\ 
$m = &dL,), D, & u2G2) = D, ; u3(L2). 

To verify that Ho is an essential map, we consider the following family of problems 

f 
DI $ ui(X) + Ui(X)gr(Ui(X)) = 0, Li_l IXI Li, i= 1,2, 

(3.6) 

(3 *7), 

d 
DI z ~2652) = D,,, $- uj(L2) 

where K3,x is defined as follows: since (d/d@gt,(B) = (1 - I)(d/dB)g,(B) + A(d/dB)g,(B) < 0 
for 13 1 0, and g:,(min{K, , KJ) L 0, g:,(max(K, , KJ) I 0, there exists a unique K3x such that 
g,,(K,,) = 0. 

As before, we associate (3.7), with the following nonhomogeneous problem 

i 

Dl$ Ui(X) = c(X), Li_1 IXI Li, i= 1,2, 

0:~ $ us(x) = F,(X), L,<xrL,, 

(34, 

The following lemma is an analogue of lemma 3.5. 
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LEMMA 3.7. For any FE Y, there exists one and only one solution u,(F) = (ulk(F), Q(F), 
Vet) E B of (3.8),, explicitly defined as follows: 

vlx(F)(x) = K, + &(F)x + & 
x s 

ss 
F,(e) de b, OlXlL,, 

1 0 0 

Q,(F)(X) = ~,,U%L,) + -&un(F)W - L,) + & 

x s 

ss 

F,(Q de b, L, 5x5 L,, 
1 -% -% 

u~AUTX) = +,U%L,) + $ $ u,,(F)(L,)(x + L,) + & 
13 

where 

P,(F) = [L2 + D,(L, - L2)(D;3)-‘]-1 Fl(@ de ds 

Fl(e) dB(L2 - L,) - + 
s 

LI 
4(e) de(L3 - Ld 

13 0 

E!(d) d&L, - L,) 

From the above result, it follows that there exist constants A$, i = 1,2,3, j = 0, 1,2 such 
thatifK--c<q(~)~L?+cforxE[L~_,,L,]andi=1,2,3,then 

$ Uik(-Uigl(Ui))(X) 5 A$ and 

fori= 1,2andj=0,1,2. 
DefinethemapQ:Xx [O,l]+B by 

Q(u, 1) = (u,,(-u,g,W), Ua-uMd), Ud-w:&+))). 

Then Q(X x [0, 11) E C,, where 

C, = u E B: [q(x)1 5 Ato, / $u&l s A;r, i$q(x)i 5 Afz 

forxe [Li_l,Li] andi= 1,2,3 
1 

. 

By using lemma 3.3 and employing the argument for lemma 3.6, we can prove the following 
lemma. 

LEMMA 3.8. The map Q: X x [0, l] + C, is a completely continuous homotopy in X(X, KY). 
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Noting that Qi(*) P Q(*, 1) = EL,,(*), it follows by the topological transversality theorem 
that EL0 is an essential map in X(X, 13x), iff Q,,(s) E Q(*, 0) also is. On the other hand, if 
A = 0, then (3.7), reduces to the following essential “one-patch” problem 

i 

J2 

2 Ul(JQ = & u2(L1), &,(L,) = $43(L,). 

DI $ Mx) + Wk~@i(x)) = 0, Li_1 I X I Li, i = 1,2,3, 

MO) = K, , wd = K,, 
(3.9) 

~I&) = uz(L1), u2(L2) = %(Lz), 

It is easy to verify that u = (u, , u2, u3) is a solution to (3.9) iff 

U(X) = K, - - G(B)dB& + $ G(8) d0 ds 
1 

for x E [0, L,], where G(x) = -Ui(X)g,(Ui(X)) for x E [Li_l, Li] and i = 1,2,3. Define 
W:Xx [0, l] + B by 

W(u, A)(x) = K, - ,I & 
L3 s 

s i 
G(0) d6’ + $ G(0) de ds. 

310 0 1 

Noting that ]G(x)l I A, := K_-E-rUa:R+E lu,g,(u,)] for x E [0, L3], we get 
1 

]I+‘@, A)(x)1 I K1 + 2A,L:D;‘, 

& FV(u, n)(x) I 2A,L3D;‘, 

$ W(u, n)(x) 5 A, 0;’ 

for x E [0, L,] and J. E [0, 11. Hence, we have the following lemma. 

LEMMA 3.9. W: X x [0, l] -, C3 is a completely continuous homotopy in X(X, &Y), where 

u E B: lUi(X)l I K: + 2A,LzD;‘, I I &(x) I 2A,L,D;‘, 
d2 

C3 = I I @q(x) I AiD;’ 

forxE[L,_,,L,]andi= 1,2,3 . 

Proof. Suppose u E X is a fixed point of W, with I E [0, 11. Then u solves the problem 
(3.3),. By lemma 3.4, K 5 ui(x) I I?, ](d/dx)ui(x)] I MA < Mi, + 1, and ](d2/dX2)Ui(X)] I 
MA < A4i2 + 1 for x E [L,_, , LJ and i = 1,2,3. Therefore, u $ 8X. It is easy to prove that W 
is completely continuous. Therefore W is a homotopy in X(X, 8X), proving the lemma. 

Now we are in the position to state our main result of this section. 

THEOREM 3.1. There exists a steady-state solution u(x) such that K I U(X) I K on 0 I x I L3 
to the problem (2.1)-(2.3) subject to the matching conditions (2.4) and (2.5). 
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Proof. Let 

C = u E B: lUi(X)l I Aio, 

where 
forxE[Li_r,Li]andi= 1,2,3 , 

Define 

Ai, = max(A&, A&, A;o, Kr + 2A,LiD;‘, K + ~1, 

Air = max(A!r, Afr, A:r, 2A,L3D;‘, Mi, + l), 

Ai = max(A;Z, A&, Ah, AID;‘, Mi, + 1). 

U= UEB:K-&<Ui(X)<K+&, 
t 

I&Ui(X)i <Ails I$Ui(X)l <Ai 

for x E [Li_l , Li] and i = 1,2,3 
1 

. 

Then X = t! and by lemma 3.1, W, : X -+ (K,) is essential in K(u, d U) = K(X, 13x). On the 
other hand, by lemmas 3.9, 3.8 and 3.6, we get the following chain of homotopies in K(X, d_X) 

w, E Wl=Q,,~Q1=H,,~H1. 

By the topological transversality theorem, HI is an essential map. Therefore, H, has a fixed 
point in XMX. Noting that a fixed point of HI is a solution of (3.1), , and thus a steady-state 
solution to the problem (2.1)-(2.5), the proof is complete. 

The following result describes the local stability of the steady state solution of the problem 
(2.1)-(2.3) subject to matching conditions (2.4)-(2.5). 

THEOREM 3.2. Suppose that 

$ I”i&!iCui)l < O for Ui E [K,Z?], i = 1,2, 3. (3.10) 

Then the steady-state solution of the problem (2.1)-(2.3) subject to matching conditions 
(2.4)-(2.5) is (locally) asymptotically stable. 

Proof. Let u = (ur , u2, u,) be the steady-state solution to the problem (2.1)-(2.3) subject to 
matching conditions (2.4)-(2.5). Define ni(x, t) = Ni(X, t) - ui(x) for x E [Li_l, Li] and 
i = 1,2,3. Then the linearization of system (2.1), (2.2), (2.3) at u = (u, , u2, u3) leads to the 
following equation 

an. 2 

L = Di $ ni + $ [Uigi(Ui)]ni at I 

and the initial, boundary, and matching conditions become 

ni(x, O) = Vi(x) - Ui(X), 

ni(O, t) = 0, Q(L, I t) = 0, 

q(L,, t) = n,(L,, 0, n2&2, 0 = n&2, 0, 

D, $ n,(L, , 0 = 02 $ n2G, 0, D2 $ nz(Lz,t) = D, -& MLz,t). 
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We consider the following positive definite function 

V(t) = S:‘Mdr + [L;t&dr + @;ti. 

Then the derivative along solutions is 

v(t) = 

Substituting the boundary and matching conditions and using integration by parts we get 

+ Dl%Vl, +,(L,, 0 - D*%(L,, t&*(L,, 

+ ~,n,(L,&n,(L,,t) - D,n,(L,J)&(L,, 

+ an,(L,,t)$n,(L,,t) - D,n,(O,t)-$~(O,t) 

0 

0 

s L1 d 
du bm@dl~; du + 

i 

L2 d 
_ bzg2@2mG dx + 

L3 d 
5 

L, du2 
- b+ mm; div. o 

1 Lo dv, 

Since K I ui(x) I K for x E [L,_, , Li] and i = 1,2, 3, by the assumption (3.10) p(t) is 
negative definite and therefore the proof is complete. 

4. CONSTRUCTION OF PIECEWISE MONOTONIC, STEADY-STATE SOLUTIONS 

IN THE CASES OF ALTERNATING CARRYING CAPACITIES 

In this section, we use a shooting type argument to give a constructive proof for the existence 
of piecewise monotonic steady-state solutions to the problem (2.1)-(2.3) subject to matching 
conditions (2.4)-(2.5) in cases 3 and 4. We prove our results for case 3. Without loss of 
generality, assume that K3 I K, < K2. All other cases can be treated analogously. 

We start with the following family of initial value problems of second order equations 

02$v2 + v,g,(v,) = 0, v,(O) = a, &v,(B) = 0, (4.1) 

where 8 E [L, , L2] and 0 I (Y I K2. Denoting the unique solution of the problem (4.1) by vl+, 
we have the following lemma. 
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LEMMA 4.1. Assume 

-$ [u,g,(~,)l < 0 for u2 E [K2, K2]. 
2 

Then for any fixed B E [L, , L,], there exists cy,(13) E (K3, K2) such that 
(i) r~,Bv~~(~)(l~) = K3; 

(ii) Us@ E (K2, K2] for all x E [e, L2] and cx E (o,,(e), K,]; 
(iii) (d/dx)u$K2(L2) = 0; 
(iv) u$~(L~) and (d/dx)@*(L,) are continuous and increasing in 1y E [a,(@, K2]. 

(4.2) 

Proof. As the first step, we prove that u z9”(x) < K2 for all CY E [K3, K2) and x E [e, L,]. 
Suppose, to the contrary, there exist CY E [K3, K2) and 7 E (t9, L2J such that ~~~~(7) = K2 and 
u!‘*(x) < K2 on [8, 7). Then D2(d2/dx2)u~~“(x) = -u~vag2(u~9a(x)) < 0, and thus (d/dx)u2B3*(x) 
is decreasing for x E [0, 7). Therefore (d/dx)u$*(x) < (d/dx)uze9*(@ = 0 for x E (f?,7), 
from which we obtain u!**(x) I u!,~(@ = (11 < K2 for all x E [t?, 71, a contradiction to 
u,eVa(7) = K2. 

Since for any given (Y E [K3, K,), u,“**(x) < K2 for x E [8, L,], we have (d2/dx2)u~sa(x) < 0, 
(d/dx)ulT*(x) < 0 and u!‘“(x) is decreasing on [0, L,] by the same argument as above. 
Therefore, u!‘*(L2) < u$a(f?) = a for all CY E [K3, K,]. As a consequence, u!‘~~(L~) < 
u!.K3(0) = K3. Evidently, u2BqK *(L,) = K2. Hence by the continuity of u$” in (Y E [K3, K,], one 
can find a constant CX,, = o,,(B) E (KS, K2) such that u$“(L2) E (K3, K2] for CY E (cY,, , K2] and 
u;‘“O(L2) = K3. 

Evidently, (iii) holds. 
To prove (iv), we claim that for any (Y, Cr E [oO, K2) with (Y < Cr, r@“(x) < u;‘“(x) for 

all x E [e, L,]. Suppose not, then there exists t E (0, L,] such that u!‘“(t) = I#“@) and 
u!,“(x) < 7$“(x) on [e, t). Then from equation (4.1) it follows that 

o2 -$ [upyx) - up(x)] = -[u;‘“(x)g2(up=yx)) - upyx)g,(up(x))]. 

Therefore if (d/du2)[u2g2(u2)) < 0 for u2 E [K,, K,], then (d2/dx2)[u19”(x) - u!‘“(x)] > 0, 
and thus 

$ [u,B, “(x) - u,B~x)I > & [p(e) - @-ye)] = 0 

for x E (13, f). So 

U;*“(X) - u$~x) 2 u;+=ye) - upye) = ii - a > 0 

for x E [e, t] which is contrary to u$“(t) = u$“(t). Hence u$“(x) > @“(x) for all x E [B, L2]. 
Consequently, ul*“(L2) is increasing in 01 E [(Y,, , K2]. 

Using the same argument as above, we can verify that u!**(x) < u$“(x) for all x E [e, L2] 
implies that (d2/dx2)[u$“(x) - u$“(x)] > 0 for x E [e, ~521. Therefore 

at x = L2 which implies that (d/dx)u!*“(L2) is increasing in cx E [me, K,], completing the proof. 
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LEMMA 4.2. Suppose that 

& [u3g3(u3)1 < 0 for u3 E [K3, K,]. (4.3) 
3 

Then there exists a constant /3,, < 0 such that the solution, denoted by uf , on [L2, L,] to the 
following initial value problem 

satisfies 

d2 
D3 Q u3 + u,g,(u,) = 09 u3653) = K3, $u,(L,) = p I 0 (4.4) 

(i) u&x) E [K3, K2] for all x E [L,, L,] and p E [&, 01; 
(ii) @(LJ = K2 ; 

(iii) uf(L2) is continuous and decreasing in p E [PO, 01; 
(iv) (d/dx)uf(L,) is continuous and increasing in p E [& , 01. 

Proof. Using a similar argument to the first step in the proof of lemma 4.1, we can prove that 
for any j3 < 0, (d/dx)uf(x) 5 p < 0 and u!(x) 1 K3 for all x E [L,, L,]. Therefore, uf(LJ > 

u&L,) - P(L, - L,) + 43 as P + --43. Moreover, &L,) = K3. Therefore by the continuity in 
/3 of uf(L2), there exists PO < 0 such that z@(L2) = K2 and u&x) E [K3, K,] for all x E [L,, L,] 

and P E [PO, 01. 
For any given j3, p with & I p < p < 0 we claim that u&x) < u{(x) for all x E [L,, L,). 

Suppose not, then there exists t E [L2, L,) such that t&x) < u!(x) on (t, L,), u?(t) = u!(t). On 
(t, L3), one has 

Therefore if (d/du3)[u3g3(u3)] < 0 for u3 E [K,, K,], then (d2/dx2)[u[(x) - u?(x)] > 0 on 
[t, L,), and hence 

$ [z&x) - u!(x)] < -& [u,B(L,) - u,B(L,)] = p - p < 0 

which implies that 

u!(t) - u&t) > z&L,) - z&L,) = K3 - K3 = 0, 

a contradiction to u!(t) = u!(t). Therefore z&x) < u!(x) for all x E (L2, L,) and all p, p with 
& I p < /3 < 0. Consequently, z&L,) is decreasing in /3 E [&,, 01. 

Since on [Lz, L,], up(x) < u!(x) and u!(x), u&x) E [K3, K,] for all p, /3 E [/IO, 0] with p < p, 
by assumption (4.3) one has 

and thus 

Q -$ r&x) - &)I = -bfkx)g,(u~(xN - u~(x)g,(u~(x))l > 0, 

$ [r&x) - &x)1 < 2 [r&L,) - t&L,)] = p - p < 0. 

Therefore, (d/dx)&L2) is increasing in fl E [&,, 01. This completes the proof. 
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Remark 4.1. Since the inverse of a continuous decreasing function is continuous and decreas- 
ing, lemma 4.2 can be reformulated as follows. If (4.3) holds, then there exist & > 0 and a 
continuous, decreasing function w : [K3, K2] -+ [& , 0] such that w(K& = &, w(K3) = 0, and 
us’” = < for any r E [Ks , ZCJ. Moreover, (d/d_@@@,) is decreasing in < E [KJ, K,]. 

Likewise, we can prove the following lemma. 

LEMMA 4.3. Assume that 

$ [ulgl(h)l < 0 for ui E [KS, K2]. (4.5) 
1 

Then there exists a constant K, E (K3, K,) and a continuous function r: [K, , K2] + R such that 
(i) <(K,) = 0; 

(ii) for any [ E [Ki , K2], the unique solution, denoted by vi, to the following intial value 
problem 

I 

2 

a -$Ul + ~lgl(~l) = 0, O_(XILl, 

satisfies vi@,) = <; 

u,(O) = K,, jp(O) = t!(r) 

(iii) (d/dw)u:(L,) < 0 if [ E (K,, K,]; and (d/dx)u[(L,) > 0 if [ E (K,, K2]. 

LEMMA 4.4. Suppose (4.2) and (4.3) hold. Then there exists a continuous function 

such that for any 19 E [L,, L2] there exists a unique solution, denoted by (u2,@, u3,@), to the 
following problem 

2 

D23 + w2(u2) = 0, x E L,J521 (4.6) 

u,(B) = r(e), $2(B) = 0, (4.7) 

2 
D1$ + am& = 0, x E K2,bl (4.0) 

u,(L,) = K3, (4.9) 

u3(L2) = uZ(L2), D3 $ u3(L2) = 02 $ u2@2). (4.10) 

Proof. For any given 0 E [L,, L,] and a E [a,(@, K2], let p 2 P(e, CY) be given such that 
u$@,~‘(L~) = ui’“(L2). By lemmas 4.1 and 4.2, such a /3 exists and j?(S, (Y) is continuous and 
decreasing in (Y E [o,(B), K,] when f3 is fixed. Consider the function 

d 
F(e, a) = o2 du 2$a(L2) - o3 du u3 d B(B,n)(L2) 
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for 8 E [L, , L,] and CY E [a,(@, KJ. By (iv) of lemmas 4.1 and 4.2, F(8, a) is continuous and 
increasing in CY E [ao(8), KJ. Moreover, 

and 
F(e, so(e)) = D, $ ZI;+@)(LJ < 0 

d B F(e, K*) = 4, dx u~o(L~) > 0. 

Therefore there exists a unique r(e) E [cyO(@, K2] such that F(8, r(0)) = 0. This verifies the 
existence of the function y: [L, , L2] -+ [K3, K,] such that (4.6)-(4.10) has a unique solution. 

It remains to prove the continuity of y. Suppose t9,, E [L,, L2] and there exists a sequence 
(0,) E [L, , L,] such that 19~ + 8” as n + co. Since r(r9,) E [K3, K,], without loss of generality, 
we may assume that r(e,) + y0 E [KS, K2] as n + CD. By the continuity of u$~ and uf in 
(0, CX) and /I, one can find a constant M > 0 such that lu$“(x)l + j(d/dx)u$“(x)( c A4 for 
XE[L~,L~],~E[L~,L~]~~~~!E[K~,K~];~~~IU,P(X)I + j(d/dx)uf(x)l <MforxE[&,LJ 
and /3 E [ &, , 0] . Therefore 

and 

By the Ascoli-Arzela theorem, without loss of generality, we may assume that z.@~(‘~) + U2 
and uf(enVY(en)) + U3 in Cl-topology, and (d2/dx2)u,B”*y’e ) n (x) -+ (d2/dx2)i7z(x) for x E [L, , L2], 
(d~/~~)u~(~~~~(%)) (x) + (d2/dx2)ii3(x) for x E [L2, L,] as n -+ 00. Taking the limit as n + 00 in 
(4.6)-(4.10) with 0 = 8,, we verify that (V 2, fi3) satisfies (4.6)-(4.10) with u,(B,) = yO. By the 
uniqueness of Q! such that F(@,, a) = 0, we get y,, = r(&,), and therefore r(0,) + r(0,) as 
n -+ 00. This completes the proof. 

We are now in the position to state our main result of this section. 

THEOREM 4.1. Assume (4.2), (4.3) and (4.5) hold, and 

u2,&1) > K, 9 (4.11) 

where u2 L is defined in lemma 4.4. Then there exists a positive, piecewise monotonic 
continuous’steady-state solution to the problem (2.1)-(2.3) subject to matching conditions (2.4) 
and (2.5). Moreover, this steady-state solution is (locally) asymptotically stable. 

Proof. For 0 E [L, , L2], we can use a similar argument to that used in lemma 4.1 in order to 
prove that (d/dx)q,,(x) is decreasing and positive, u2,&) is increasing for all x E [L, , 0) such 
that u2,e(x) > 0. Therefore under the assumption that K3 < K, , it follows that if u~,~,(x) 1 0 
for all x E [L,, L,], then u~,~,(L~) < u~,~,(L~) = K3 I K,. On the other hand, since 
u~,~,(L~) > K,, by the continuity of u,,e(Lr) in t9 E [L,, L2], if u 2,LI(x) does not remain positive 
on [L,, 15~1, then there must be 8, E [L,, L2] such that u 2,_e,(x) > 0 for all x E [L,, L2] and 

Ki < ~2, e,WJ < K, - In summary, we can always find 0 E [L, , L,] such that u2,&) E 
(Ki , K,). Without loss of generality, we may assume that u2, e(Lr) > u2, &J for all 19 E [L, , 0). 
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Consider the function G : [L, , I!?] + R defined by 

where c = c(8) = v,,,(L,). By assumptions, &L,) = q,,,(L,) > K, . Therefore by lemma 4.3, 
G(LJ = Dl(d/dx)v~‘L1’(LI) > 0. When 13 = 0, K1 < c = u2 ,&,) < K,. Hence by lemma 4.3, 
D,(d/d&(L,) < 0. Moreover, as we have shown, (d/&)vz,e(L,) is positive. Therefore, 
G(8) < 0. By the continuity of q,,(L,) in 0 and v[(L,) in c, we can claim that there 
exists 8* E [L1, 81 such that D,(d/dx)u[*(L,) = Dz(d/dx)uZ,B*(Ll), where <* = u~,&~). 
Therefore 

1 

u:*(x), OIXSL,, 

u(x) = %,/3*(X), L, SXIL2, 

Q,o*(X), L, I x 5 L3 

is a steady-state solution of the problem (2.1)-(2.5). Evidently, u(x) is increasing in [0, e*) and 
decreasing in (a*, LJ. The local asymptotic stability of v(x) can be verified by an argument 
similar to the proof of theorem 3.2. 

We notice that (4.11) is equivalent to the assumption that w(&) < KS, where w is the solution 
to the following initial value problem 

&$ w + wgz(w) = 0, x E IL,, &I, 

wq) = K,, $ w(L,) = 0. 

From this we have the following corollary. 

COROLLARY 4.1. Assume (4.2), (4.3) and (4.5) hold, and 

K,-K,<&(L,-L,)’ (4.12) 
2 

where (Y = min(yg,(u,) : K3 5 u2 5 K,]. Then there exists a positive, piecewise monotonic, 
continuous, asymptotically stable, steady-state solution to the problem (2.1)-(2.3) subject to 
matching conditions (2.4) and (2.5). 

Proof. According to theorem 4.1 and the remark immediately following it, it suffices to 
prove that w(L2) < KS. Suppose not; then by lemma 4.1, K3 I w(x) I K, for all x E [L, , L2], 
and, therefore, D2(d2/dx2)w = -wg,(w) I -a, from which we get that (d/dx)w(x) I 

-(&D2)(x - L,) and w(x) I -(cr/2D2)(x - L,)2 + K1 for x E [L,, L2]. Therefore 

w(L,) 5 & (L2 - L,)2 + K, < K3 
2 

which is contrary to w(x) 1 K3 for x E [L, , L2]. This completes the proof. 
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Remark 4.1. Biologically, there are various controls on the system which will cause (4.12) to be 
satisfied; for example, increasing the length of the middle patch, decreasing the diffusivity of 
the middle patch, or decreasing the difference of the carrying capacities of the first and the third 
patches. 

For instance, in the case of alternating carrying capacities, where K, - K3 may not be too 
large, then the length of the middle patch could also be small. However, if the carrying 
capacities are monotonic so that K, - K3 may be large, then either the length of the middle 
patch must also be large or the diffusivity D, small (or a combination thereof). 

5. CONSTRUCTION OF MONOTONIC STEADY-STATE SOLUTIONS 

IN THE CASE OF MONOTONIC CARRYING CAPACITIES 

In this section, we present a constructive proof for the existence of a monotonic steady-state 
solution of the problem (2.1)-(2.5) in the case where the carrying capacities of successive 
patches are increasing or decreasing. We consider only the case that K, < Kz < KJ, the other 
case K3 < K2 < K, can be treated analogously. We start with the following family of two-patch 
problems. 

O<x<L,, (5.1) 

(5.2) 

(5.4) 

Let (UP, uf) denote the solution to the above problem for fl E [L, , I,,]. 

LEMMA 5.1. (i) There exists a unique, continuous, monotonic function 

satisfying (5.1)-(5.4); 
(ii) there exists a constant A4, > 0 independent of /3 E [L, , L2] such that I(d/dx)uf(x)I I MI 

for x E [0, L,]; 
(iii) ,‘irn+ (d/d,+&?) = (D1/DZ)(d/dx)q(L1), where VI(X) is the unique solution of the 

following iwo-point boundary value problem 

c u,(o) = K,, v,(L,) = K2. 
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Proof. The first part was proved in [7]. To prove the second part, we recall a result from [7] 
which claims that for the following initial value problem 

D d2u, 
1 yp + u,g,(u1) = 09 OIXSL,, 

u,(O) = K, 3 -$4,(O) = CY, 

if CY > 0, then (d/dx)u,(x) > cx on (0, L,]. Therefore, to guarantee u,(L,) E [K,, K2], a must 
satisfy 

from which it follows that 

K2 - K, OICXIP 
Ll 

(5.5) 

d P K2 - K, 
0 I &U’(O) I 7 for anyBE [L,,L,]. (5.6) 

1 

Therefore for any x E (0, L,], one has 

- K2 - K, ; L K2 - K, 

L D, 
- 4m&(m)) L 5 L 

1 
+ $L,P,, 8 E (0,x), 

1 

where 
PI = K y*y, Ixgt(x)l . 

1 2 

Therefore I(d/dx)uf(x)I I M, withiM, = ((K2 - K,)/L,) + (L,P,/D,). 
To prove the third part, we notice that 

and 

where 

Therefore 

p2 f K y, Ixg,Cx)l . 
1 z 

1 = 0, 

from which and by the continuous flux matching condition (5.4), we get 

lim 
[ 

d u!(p) - 2 iuP(L,) = 0. 
a-L: d_x 2 I 
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If lim(d/dx)u~(LJ # (d/dx)u,(L,), then there exists a sequence & -+ L: as n -+ co and a 

cork&t 6 > 0 such that 

-$p.(L,) - -g u,(L,) L 6 n = 1,2, . . . . (5.7) 

From the conclusion (ii), we have I(d/dx)up(x)I 5 Ikfi and 

D1 $24fvx) = lup(x)g,(up(x))l I P, I I 
for all x E [0, L,]. Therefore by the Ascoli-Arzela theorem, we may assume that lim up(x) = 

n-+m 
u*(x), lim (d/dx)up(x) = (d/dx)u*(x) and lim (d*/dx*)ug”(x) = (d*/dx*)U*(x) on [0, L,]. 

n-m n-m 
Moreover, from the equality 

D, $ up”(x) + u~(x)g,(uf”(x)) = 0 

we get 

D, $ U*(x) + U*(x)gi(U*(x)) = 0, OSXlL,. 

Noting that 

and 

we get 

for x E WI, L,l, 

Therefore 

lim I &(LI) - t&(&)l = lim I I -g&s, (P, - L,) = 0, f3 E 6% 3 Ah. n+oo n+m 
This, together with the continuous flux matching condition (5.3), implies that 

lim up = lim z&(L1) = lim z&/3,) = K2, 
n+co n-cc n+m 

Therefore U* satisfies the following two-point boundary value problem 

D, -$ U*(x) + U*(x)gi(U*(x)) = 0, OSXlL,, 

u*(o) = K,, u*(L,) = K2. 
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That is u*(x) = vr(x). This leads to a contradiction to (5.7) and 

lim $uIp.(Lr) = &u*(L,). 
n-m 

Therefore, 

lim d &Lr) = 2 $ v,(L,). 
ie”+L: dX 2 

The proof is then complete. 

Likewise, for the following family of two-patch problems 

D2$ u2 + ~zgz(~2) = 0, pzsxlL,, 

d2 
L42 u3 + u,g,(u,) = 0, L21XSL3, 

uz(P) = K2t ~3653) = K3, 

uZ('52) = u,(L,), D2$ uz(L2) = D,$,(L,). 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Denoting the solution by (uzB, Use), we get the following lemma. 

LEMMA 5.2. (i) There exists a unique, continuous monotonic function 

UzIc(X), /3IXSL,, 
u&) = 

U3p(X), L, I x I L, 

satisfying (5.8)-(5.11). 
(ii) There exists a constant M2 > 0 independent of /? E [L, , L2] such that 

d 

I I 
z U3B(X) 5 M2 for X E [Lz, L3]. 

(iii) ~~_(d/cLx)u2&l) = (D,/D,)(d/dx)u,(L,), where u3(x) is the unique solution of the 

following t?wo-point boundary value problem 

i 

D3$ + u3g3(u3) = 0, L21XIL3, 

I u3(L2) = K2, U3(L3) = K3. 

Employing a similar argument to that of (iii) of lemma 5.1, we can prove the following 
lemma. 

LEMMA 5.3. (d/dx)uf (fl) is continuous in /3 E [L,, L,] and (d/dx)u2#) is continuous in 
P E [L, 3 L2). 

We now state the main result in this section. 
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THEOREM 5.1. If 

(5.12) 

then there exists a positive, monotonic continuous asymptotically stable, steady-state solution 
to the problem (2.1)-(2.3) subject to matching conditions (2.4)-(2.5). 

Proof. To prove the existence of a steady-state solution to (2.1)-(2.9, it suffices to verify the 
existence of p E (L, , L,) such that (d/d-#&3) = (d/dx)q,(/3) for some /3 E (L, , L,). For this 
purpose, we consider the function 

By lemma 5.3, f(p) is continuous on (L,, L,). By lemma 5.1, 

;In+ - 1 g-&3) = 2 2 $ u,(L,). 

By lemma 5.2, 

;irn+ - 1 $ u,,(P) = 2 uzL,(W. 

Therefore 

Likewise, 

,‘iy+ + 1 f(P) = 2 2 -&u&) - & u2&,). 

Therefore if (5.12) is satisfied, then by the well-known mean value theorem of continuous 
functions, there exists p E (L, , L2) such that (d/dx)u&b) = (d/dx)u,#) holds. 

The monotonicity of the obtained steady-state solution is obvious, and the local asymptotic 
stability can be proved by using a similar argument to that for theorem 3.2. 

The following result provides a rough but simple sufficient condition to guarantee (5.12). 

COROLLARY 5.1. If 

(5.13) 

and 

then (5.12) holds. 

(5.14) 

Proof. Since u,(x) E [K,, K2] for x E [O, L,], (d2/dx2)uI(x) = -(l/Dl)ul(x)gl(ul(x)) > 0 for 
x E (0, L,], and thus (d/dx)u,(x) is increasing. Therefore (d/dx)q(x) > (d/dx)u,(O) > 0 on 
(0, L,]. Integrating the equality D,(d2/dx2)u, + u,g,(u,) = 0, we get 
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Therefore 

from which it follows 

v~(x) SK, + [Jm]x forxE P,bl. 

Hence, since u,(L,) = K,, we must have 

(5.15) 

On the other hand, uZL1(x) E (KZ, K3) for x E (L, , L,), hence 

This implies that (d/dx)u,,,(x) is increasing, and thus 

& U2L,(X) > $ U2&I) 

for all x E (L, , L2). Therefore 

U2L,(X) > K2 + [ &2&I)](x - M. 

Noting that uzLI(L2) E [K,, K,], we get 

d 
z ~ZL,(J51) < 

K3 - K2 

L2 - L1. 
Therefore 

DI d 
5 & u,(L,) - -g U2LI(L1) ’ 

2 

Likewise, one can prove 

Therefore (5.12) holds. 

Remark 5.1. Note that if D,/D2 and D3/D2 are sufficiently large, then (5.13) and (5.14) must 
hold, leading to a stable steady state, that is to say that the diffusivity in the end patches are 
large compared to the diffusivity in the middle patch. One could easily visualize an environment 
(such as a lake) where the rate of flow in a stream entering and a stream leaving is high 
compared to the flow in the lake. 
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6. DISCUSSION 

The focus of this paper is steady-state analysis of a system of reaction-diffusion equations 
describing the growth of a population which diffuses in an environment consisting of patches 
along a linear transect. 

By using a topological transversality theorem due to Granas and an apriori bound technique, 
we have shown the existence of a positive steady state in the case of reservoir boundary 
conditions and continuous flux matching conditions at the interface described in (2.3), (2.4) and 
(2.5). In a future paper, we plan to modify our argument to the cases of no-flux boundary 
conditions (closed patches), zero reservoir boundary conditions (extremely hostile environment) 
and more general continuous flux matching conditions. 

In the case of only two patches, a positive, monotonic steady state has been constructed in 
[7]. However, in the case of more than two patches, we have only constructed a positive steady 
state under further restrictive (but reasonable) hypotheses. Moreover, in more than two 
patches, the carrying capacities may alternate in size, therefore the positive steady state may be 
piecewise monotonic rather than monotonic. 

Biologically, the above-mentioned additional constraints are reasonable. Constraint (4.12) is 
satisfied for example if IK, - K31 is small (e.g. forestry environment which is similar on both 
sides of a trench) or IL2 - L, 1 is large (the trench is wide as compared to the forest on one side, 
as for example the Shakwak Trench in the Kluane Mountains of the Yukon Territories, 
Canada), or if the diffusion across the second patch is small. 

Conditions (5.13) and (5.14) are also satisfied if the diffusion across the middle patch is 
relatively small. It is also satisfied if the ratio of the difference in carrying capacities to the 
difference in patch lengths is small between the outer patches and the middle patch. 

Clearly some constraints are necessary for our techniques to work since they depend on 
utilizing constructive solutions to the two-patch problem. If, for example L2 - L, is small 
and K, - K, is small, but L, - L, is large and K3 - K2 is large and K, < K2 < K,, the 
stable steady state will miss K2 on the range L, - L, altogether, in which case our technique 
cannot work. 

Possible modifications leading to future work are to consider a model with general space 
dependent carrying capacities and diffusion coefficients, as well as spatial diffusion in higher 
dimensions, rather than along a linear transect. These lead to certain complications, which we 
hope to address in the future. 
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