
Journal of Dynamics and Differential Equations, Vol. 3, No. 2, 1991 

A Neutral Equation Arising from 
Compartmental Systems with Pipes 

Istvfin Gy6ri 1 and J. Wu 2 

Received July 20, 1989 

We consider compartmental models for the mathematical description of many 
biological processes in which the material transport between compartments 
takes a nonnegligible length of time and each compartment produces or 
swallows materials. The proposed mathematical model is a neutral functional 
differential equation. We describe some of the global dynamics of the solutions 
to the linear model equation. 

KEY WORDS: Neutral equations; compartmental systems; asymptotic 
behavior. 

1. MODEL EQUATIONS 

In theoretical epidemiology, physiology, and population dynamics, com- 
partmental models are frequently used to describe the evolution of systems 
which can be divided into separate compartments, marking the pathways 
of material flow between compartments and the possible outflow into and 
inflow from the environment of the system. Usually the time required for 
the material flow between compartments cannot be neglected. A model for 
such system can be visualized as one in which compartments are connected 
by (imaginary) pipes which material passes through in definite time. 
Because of the time lags caused by pipes, the model equations for such 
systems are differential equations with retarded arguments, as opposed to 
the classical case where model equations are ordinary differential equations. 
For details, we refer to Jacquez (1972), Anderson (1983), Gy6ri (1986), 
and the references therein. A concrete example is the radiocardiogram 
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based on the model pictured in Fig. 1, where the two compartments 
correspond to the left and right ventricles of the heart, and the pipes 
between them represent the pulmonary and systematic circulation. Pipes 
coming out from and returning into the same compartment may represent 
shunts and the coronary circulation. See Gy6ri (1982) and Kanyar et  al. 
(1981) for details. 

In order to make it easier to refer to, we denote by C1,..., Cn the 
compartments of a compartmental system, by x i ( t )  the amount of the 
material in compartment Ci at time t, and by Co the environment of 
the compartmental system. We make the following assumptions. 

(H1) The change of the amount of material of any compartment Ci, 
1 ~< i ~< n, in any interval of time equals the difference between 
the total influx into and the total outflux from C~ in the same 
time interval. 

(H2) The inflow rate of material from the environment Co into the 
compartment Ci at time t is given by the input function I+(t), 
i = 1,..., n. 

(H3) At time t~>0, the rate of material outflow from C~ in the 
direction of C/ is given by the so-called transport function 
gji( t ,  X+(t)), j = O, 1 ..... n and i-- 1 ..... n. 

Fig. 1. A pipe-compartmental model of blood circulation. 
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(H4) Material flows from compartment Cj into compartment Ci 
through a pipe Po having a transit time distribution function 
F~(t, s), i--  1 ..... n, j = O, 1,..., n, t >~ O, s >>, O, where a function F: 
[0, oo ) x [0, oo) ~ [0, oo) is called the transit time distribution 
function of a pipe P, if 

(a) F(t ,O)=O, t>~O; 

(b) for any fixed t >>-O, F(t, s) as a function of s is monotone 
nondecreasing and continuous from the left; 

(c) l i m s ~ + o o F ( t , s ) = F ( t  , oo)=1,  t~>O; 

(d) for any fixed u>~O the function F(t, t - u )  is monotone 
nondecreasing in the variable t, that is, 

F(t l ,  tl -- u) >~ F(t2, t2 - u), u >~ O, tl > t2 >10 

(e) the amount of material leaving pipe P until time t is given 
by S~ St_~ h ( u ) d u d ,  F(t, s), where h(t)  is the rate of 
inflow into the pipe P for - ~ < t < + oo. 

Under these assumptions, one can easily image the situation where 
material flow between compartments takes place through pipes of definite 
lengths with definite positive transit time distribution. The schematic 
picture of such a system is shown in Fig. 2. 

The model equation is then 

x i ( t ) - x i ( t ) =  -- gji(u, x i (u))  du 
j = O  

+j~"l= -co gij(u, x j (u)  ) du d,F~( t, s) 

 foOf f/ - go(u, x / (u))  du d~Fo.([, s) + Ij(t)  dt 
j = l  --oo 

for all t ~> {~> 0. Setting {= 0 and 

xi( t )  = opt(t) for t ~< 0, i = 1,..., n 

we obtain the following model equation: 

x~(t) = Ci((p) +j~==l -oo go.(u, x i (u))  du dsf~j(t, s) 

-- gj,(u, x i (u))  du + Ii( t)  dt 
/~0  
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Fig. 2. Schematic of the ith and j t h  compartments  in a compartmental  system with pipes. 

where 

Ci((p)=cpi(0)-  ~ f :  I -s g~;(u,(pj(u))dud, F~(O,s) 
j =  t - c o  

For simplicity, we consider a special case where 

F~(t,s)=F~(s), t>~O, s>~O, i = 1  ..... n, j = 0 ,  1 ..... n 

where Fo(s ) is monotone nondecreasing and continuous from the left with 
F~(0) = 0 and F u ( ~ ) =  1. In this case, the model equation becomes 

n t 

xi(t) = C,(~o) - ~ Io gj~(u, xi(u)) du 
j = 0  

n o3 t - - s  f f  

+j~",= fo f_~ gij(u, xj(u))dudro(s)+ Ii(u) du (1.1) 

for t >i 0, i = 1,..., n. We now make the following assumption, which is the 
major difference between our model equation and those investigated by 
Araki-Mori (1979), Bellman (1970, 1971), Brown and Godfrey (1979), 
Gy6ri and Eller (1981), GySri (1982, 1986), Lewis and Anderson (1980), 
Mazanov (1976), and Ohta (1981). 

(H5) Each compartment is "active" in the sense that at the moment t 
some material is produced or swallowed by each compartment. 
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We can interpret this flow of material as a part of the net inflow rate I~(t) 
of material from the environment into the compartment Ci, and hence we 
assume that Ii(u) satisfies 

Ii(u) du = S~(u, x~(u)) dGi(t- u) + hi(u) du (1.2) 
- - o 0  

where Si: E0, oc ) x E0, oo ) ~ ( - 0% + oo ), G~: [0, oo ) ~ ( - oo, + co ), and 
hi: [0, oo) --, ( - o% + oo ) are given continuous functions. Substituting (1.2) 
into (1.1) and taking derivatives, we obtain the following neutral functional 
differential equation: 

d lx i ( t ) -  fo Si(t-u, x~(t-u)) dG~(u) 1 

k = - j=o g/i(t, xi(t))+j~.=l gij(t-s'xj(t-s))dF~ (1.3) 

for all t ~> 0. 
If Si is identically zero, Eq. (1.3) is reduced to a retarded integro- 

differential equation which has been widely investigated in the literature 
[see Gy6ri and Eller (1981), Gy6ri (1982, 1986), and references therein for 
details]. In this situation, the compartments are "passive," which means 
that they do not produce and swallow material, and therefore the law of 
the mass conservation holds true. 

In the case where S i is not identically zero, S~_~ Si(u, xi(u)) dGi(t- u) 
represents the net amouont  of material produced ( S i > 0 )  or swallowed 
( S i < 0 )  by the compartment C; during the time interval [0, t]. Such a 
system can be visualized as one in which there exists a pipe Ti setting out 
off and returning to the compartment Ci which the produced or swallowed 
material passes through. In such a situation, Gi can be regarded as the 
transit time distribution function for the pipe Ti, and thus G~ is monotone 
nondecreasing and continuous from the left with Gi(0)= 0 and G~(oo)= 1, 
where i = 1,..., n. 

The major purpose of this paper is to propose the model equation 
(1.3) for "active" compartmental systems and to make a start at the study 
of the qualitative analysis of such a model equation. 

2. QUALITATIVE ANALYSIS OF LINEAR MO D ELS  

In this section, we describe some qualitative properties of solutions to 
linear model equations. Of major interest is the stability and asymptotic 
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stability problem. This problem has significance from the viewpoint of 
theory and application. In application, due to the self-regulating feature, a 
biological system endeavors to get to an equilibrium state which appears, 
in the model equation, as the model equation possesses an equilibrium 
point and the solution tends to such an equilibrium point as t ~ oo. 
Theoretically, if the equilibrium state of the system is asymptotically stable, 
then the knowledge of the equilibrium state and the numerical solution on 
a finite interval allows one to make an inference for the infinite interval. 

We make the following assumption in our model equation (1.3): 

(H6) gu(t, xj) = aux j and Si(t, xi) = bix~, where a~, bi are constants, 
and aij>~O, i = 1  ..... n, j = 0 ,  1,..., n. 

Let 

~i = ~ aji 
j = o  

rij(s) = aijFu(s) 

ui(s) = biGi(s) 

Then we have 

(i) ro(s), l<~i,j<~n, are monotone 
E0, oo) with r~(0) =0 ,  ru (oe)<  oo. 

With respect to ui(s), we assume that 

(H7) u,(s), l < ~ i ~ n ,  are monotone 
[0, oo) with ui(0) =0 ,  u i ( m ) <  1. 

We further 

(H8) 

(H9) 

Under 

~ r  l ~ i , j ~ n  and s ~ 0  

nondecreasing functions on 

nondecreasing functions on 

assume the following continuity conditions: 

for any continuous function x:R--*R,  
~ x ( t -  s) dui(s) and ~- ~ x ( t -  s) drij(s), 
continuous for all t ~ [0, oo); and 

hi(t), 1 <~ i <<, n, are continuous functions on [0, oo). 

the above assumptions, Eq. (1.3) can be written as 

x,(t)-  xi( t-  s) du,(s) 
dt 

= - 2 i x i ( t  ) + xj( t  - s) dri/(s) + hi(t) 
j = l  

the functions 
i , j = l  ..... n, are 

(2.1) 
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According to Wu (1986, 1987) and Wang and Wu (1985), for any 
q~=(q)l,...,(0n), ~oieBC((-o%O],R), the set of bounded continuous 
functions on ( - o o ,  0], there exists a unique function x = ( x l  ..... x,): 
( - 0 %  +oo)  ~ R n such that xi(t) = q~(t) for t <% O, x~(t)-  
~ x ~ ( t - s )  dui(s) is differentiable on [0, oo) and (2.1) holds for all 
t~>0. Throughout this section, we assume that solutions of Eq. (2.1) satisfy 
the following property: x~(t)>~O and & ( t ) - ~ x ~ ( t - s ) d u ~ ( s ) ) O  for 
t />0 and i = l  ..... n, provided that opt(s) 1>0 for all s~<0 and 
q~(O)-~ch(-s)du~(s)>~O for i=l,...,n. In the next section, we 
investigate this property. 

Our first result describes the stability and boundedness of solutions. 

Theorem 2.1. I f  there ex&t positive constants al,..., an such that 

2 i -  ~, [fij](oo) ai 
~ 7f-Z)  >-" 0 (2.2) j=~ aj 

where 

If ol ( o 0 ) =  ( ~  d tr ii(s) - ~iui(s)t, 
l <~iCj<~n 
l<,%i=j<~n 

then we have the following conclusions." 

(i) if hi(t)= 0 for i = 1,..., n and t >>-O, then the zero solution of Eq. 
(2.1) is stable," and 

(ii) if  ~ [hi(t)l < +0% then all solutions of Eq. (2.1) are bounded. 

Proof. Let 

and 

W(t)=max{V(t), max aj(1-uj(oo)) II~ojll} 
i<~j<~n 

where 

Ilcpilr = sup I~oi(s)l 
s~<O 
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If at m o m e n t  t > O, we have W(s) <~ W(t) for s e [0, t ] ,  then only two cases 
m a y  occur. 

Case 1. W(t)=maxl<_j<~,as(1-us(oo)) II~ojll and 

max  {aj(1 - us(oo))IlrPjl[ } > V(t) 
l<~j<~n 

In this case, by the continuity of V, we have W ( z ) =  
maxl~<j~n{aj (1-uj (oo)) l tq) j l l  } for r~>t  and close to t. Therefore  
W+ (t) = O, where 

P / + ( t ) =  lim W ( z ) -  W(t) 
t~t + z - - t  

Case 2. W ( t ) =  V(t)>~maxl<~i<n(1-ui(oo)) ai [Iqo/ll. 
According to the definition of l~+( t ) ,  we can find a sequence {tk} 

such that  t k ~ 0  + as k ~  oo and 

W(t + tk) - W(t) 
l~ + (t) = lim 

k~ oo t k 

then 

If  there exist infinitely m a n y  tk such that  

W(t + tk) = max  (1 - uj(oo )) aj IIq)jl4 
l<~j<~n 

/J/+(t)  = lim maxl~<J'<n(1 -uj(oo)) ajl[~ojH- W(t) 
k ~  oo t k 

Not ing  that  W(t) = V(t) >>. maxl~<j~< , (1 -  uj(oo))ajlLtpjll, we obta in  
w+ (t) ~< o. 

If  there are infinitely m a n y  t k such that  W(t+tk)= V( t+t~)r  
maxl<j~<n [1 - b / j ( o o ) ]  aj Iltpjll, then we have 

v ( t  + t~) - v ( o  
1?/+ (t) = lira 

k ~  oo I k 

Let J =  {j ;  l<~j<~n,  a j [ x j ( t ) - ~  x j ( t - s )  duj(s)] = V(t)}. Then  J is a 
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finite set, and thus we can find an integer m e J and a subsequence of {tk} 
(denoted by {tk} for simplicity) so that 

I ~ +  ( t )  = lim 
k ~  oo t k 

a m [ X m (  t + t k )  - -  f f f  ~ Xm(  t + t k - -  S ) alUm(S)] - -  V (  I ) 

#l + oo ] 

+ 2 fo xi( t-s)  dli~mjF(s)+hm(t) 
j = l  

I 1 = a  m - -  - -  V ( t ) +  ~ xj(t-s)  dlfmjl ( s ) + h m ( t )  
am j =  I 

On the other hand, 

W(s)=max{V(s), max aj (1-u j (oo)) l l~o j l l }~  W(t)= v(t) 
l<~j<~n 

for s e [0, t] implies that 

for O<<.s<~t 

Therefore if these exists r e [0, t] such that x j (z)= sup . . . .  ~<,xj(s), then 

f0 ~oo v(t) xj(r)<~ x / ~ - s ) d u / s ) + - -  
aj 

which implies that 

1 V(t) 
x;(~) <<. 

1 - u j ( ~ )  aj 

Moreover, if there exists no r e  [0, t] such that Xs(r)=sup o-j<~,xj(s),  
then obviously 

v(t) 
x:(s)<~ I1~+11 ~< for s<~t 

aj(1 - ui(oc)) 
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In summary, we have 

and hence 

v(t) 
sup xj(s) 

. . . .  ~<, aj(1 -- uj(oo)) 

L f /  (s)<<-sL 1 [f"v[(~176 xj(t-s) dl?mjl a j (1Zu~))  
j = l  = 

Therefore 

v(t) 

*+ ( t )  = - [ 2 m - - j f  L ~, aj(] - Uj(Oo))jaml~Jl (o0) ] V(t)+amhm(t)~a~.hm(t) 

So, in both case 1 and case 2, we have shown that if at the moment t > 0, 
W(s)<<. W(t) is satisfied for sE [0, t], then I/V+(t)<<.maxl~m<.amlhm(t)l . 
Therefore, by the well-known comparison principle in the theory of 
functional differential equations (cf. Lakshmikantham and Leela, 1969), we 
obtain that 

f2 W(t)<~ W(0)+ max am Ihm(t)l dt, t>~O 
l < ~ m ~ n  

This implies that 

f2 V(t) <~ W(O) + max am Ihm(s)l ds, 
l <~m<-<.n 

t~>0 

and hence 

1 1 W(O)+ max am Ih,~(s)l dx + Itq~,ll, Ix,(t)l ~ 1 -ui(oo)  ai l_<m~<n t>~0 

Therefore our conclusions follow from the inequality 

W(0)~<max max ai ~oi(O)- ~oi(-s)dui(s) , max ai[1-ui(oo)]ll~o~][ 
~ l ~ i ~ n  l~ i<~n 

The proof is complete. 

Theorem 2.2. Suppose that 

(i) Z~--_r'~ r j i ( O ) = f l i ~ O  , l <~i<<.n, J = l  

(ii) Ihi[ 6L1[0, oo), and 
(iii) y~sdro.(S)< +oo for i , j = l  ..... n. 
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Then we have the following conclusions." 

(a) 
(b) 

(c) 

all solutions of  Eq. (2.1) are bounded, 

if ili>O for i=l, . . . ,n,  then ~ [xi(t)l dt < +oo for 1 <~i<~n; and 

if h i ( t ) -O  for l <~i<~n and t>~O, and fli>O for 1 <~i<~n, then 
xi(t) --+ 0 as t ~ oo for all i = 1,..., n. 

Proof. Integrating Eq. (2.1), we get 

fo fo ' xi(t)--  x * ( t - s )  dui(s)=~~ ~~ dui (s ) -2 i  i xi(s) ds 
~0 

+j2fo 
Noticing that 

xj(u - s) drij(s) du Jo 

x / u  - s) dro(s) du + fo hi(s) ds 
j = l  

t u r,t (,oo 

= fo fo x , ( u - s )  dro.(s ) du + Jo Ju x , ( u - s )  dro(s)du 

We obtain 

X i ( t )  - -  x i ( t  - -  S) d u i ( s  ) + )~i x i ( s )  E O0 Xj(V) dvrij(t) 
1"= 

fo = q),(O) -- q),(--s) du~(s) + h,(s) ds 

+ (o;(u- s) drg(s) d u -  x:(v) dv drij(s) 
j = l  j = l  - - s  

(2.3) 

865/3/2-9 
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from which it follows that 

i = 1  i = l  j ~ l  

<~ 2 ~o,(0)- ~o,(-s) dui(s) + hi(s) ds 
i = l  0 i = l  

+ ~0;(u - s) &~(s) du 
i = 1  j = l  

On the other hand, 

f] f f  ~o/u- s) dro(s) du-- fo' f~ ~oj(u- s) du dr~(s) 

+ f~ f] ~o;(u-s) dudr~(s) 

<~ fo sdr~(s) II q~jll + f~ tdri:(s) I1 ~~ 

fo  sdr ~(s) II~o;ll 

and 

f? xi(t) - xi(t - s) dui(s) ds >~ 0 

Then from inequality (2.4), it follows that 

~, Ixi(t)- fox,(t-s)dui(s)l<-G M(q o) 
i = 1  

where 

for t~>0, i = l  ..... n 

for t~>0 

g(~o)- ~,(o)-j ~,(-s)dui(~) + f. hi(~)ds 
i = l  0 i = l  

+ Y sdru(s) II~ojll 
"=1 j = 1  

Equation (2.6) implies that 

M(~o) 
xi(t) < 1 Zu--~) + I[~piN for all t 1> 0 

dv 

(2.4) 

(2.5) 

(2.6) 

and thus (a) is proved. 
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If fii > 0, from inequality (2.4) it follows that 

i f l i f~xi(v)dv~M(q~) 
i = l  

Therefore, since x~(t)>~0 for all t, we have 

1 
fo xi(v) d v < ~  M(q~) 

which implies (b). 
To prove (c), we consider the integral ~ ~o x j ( t - s ) d t  drij(s). By 

interchanging the order of integration, we have 

f ?  f ?  x / t - s ) d t d r u ( s )  

= xj(t - s) dr~(s) dt+ ~j(l - s) dr~j(s) dt 
t 

;of) for; = x~(t - s) & dr~/(s) + ~oj(t - s) dr~(s) dt 

;o ;o <~r~/oo) x / v )  dv+ sd%(s)l[~/I 

and thus 

d ,o~ dui(s)ld t -2,f?x,(t)dt<<.fo ~Ixi(t)-jo x,(t-s) 
_1 

= - 2,x~(t) dt+ xj(t - s) drr dt 

;o s fo <~ --)~ xi(t) dt+ r~(os) x/(v) dv 
j = l  

+,Y~:~ ;o sd~As)ll~~ 

which implies that 

d x i ( t ) - j  x i ( t - s )du i ( s )  e L l [ - O , ~ )  
dt o 
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and thus 

tlim~ x i ( t ) -  x , ( t - s )du i (s )  =Ci< oo 

exists. Consider now the difference 

C 
yi( t)=x,( t)  

1 - u , ( ~ )  

~ o o  co t Evidently, limt [ y i ( t ) - ~ o  y , ( - s )  du~(s)] =0. Let 

;o y i ( t )  - -  y i ( t  - -  S )  d H i ( S  ) = h ( t )  

For any ~ > O, choose T >  0 sufficiently large so that 

f T  dui(s) Ih(t)l + y i ( t -  s) < e for all t >i T 

Therefore, for all t >~ T, we have 

<<. f~  y i ( t - s )du , ( s )  +e ly,(t)l 

<~ui(~) sup ly~(s)l +5  
t --  T<~s<~t 

Choose t ha i ,=  [nT, (n+ 1)T] so that 

Iyi(G)[ = max ly~(t)l 
t~In  

then 

[yi(tn)[ ~8 + bti((~)[yi(tn_~)l 

if there exists u E [ t~ - T, nT] with lyi(u)l = maxt~ E,,,- T,~T] ly~( t ) l ,  or 

[Yi(G)] <~ ~ + lYe(G)[ u~(oo) (2.7) 

if max~E,_nT,,.j  lyi(t)[ =max~,E,r,,,l  lye(t)[. Therefore, if ly~(t,_~)l ~< 
5/ [1-ug(oo)] ,  then lyi(t~)l ~<~/[1-u(oo)] ,  and hence lyi(tk)l <~ 
~/[1--u~(oo)] for all k>~n-1.  If lYe(G)[ > e / [ 1 - u e ( o o ) ] ,  then lyg(t~)l ~< 
e + u~(oo)lye(G 1)1. This implies that either there exists a positive integer 
K such that 

8 
lY,(tk)l~< forall k ~ K  (2.8) 

1 - u , ( o o )  
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o r  

iy,(t~)l~+ui(co)lyi(t~_~)l for n = 1, 2,... (2.9) 

In the latter case, we have 

[yi(t,)[-..< a + ui(co)[a + Ui(co)[yi(tn_2)t] 

< e E l  + u i ( c o ) +  . . .  + uT(co)] + uT+ x(co) M(~,o)] 

g 

<~ ~ uT+ ~(co ) M(q,) 
1 -u~(co) 

Therefore, in both of these cases, limt ~ oo yi(t)  = 0 and thus lira, ~ oo xi(t) = 
C~ ~> 0. On the other hand, ~ x~(t) dt < co, therefore C~ = 0. This completes 
the proof. 

3. NONNEGATIVE PROPERTY OF SOLUTIONS 

In our model equation (2.1), xi(t)  denotes the amount of material in 
the compartment C~ and x ~ ( t ) - ~ x ~ ( t - s ) d u ~ ( s )  denotes the amount 
of material swallowed by Ci. Therefore it is reasonable to require 
that solutions corresponding to nonnegative initial condition and 
( p i ( O ) - ~ o ~ ( - s ) d u ~ ( s ) > ~ O ,  l<<.i<~n should satisfy that xi(t)>~O and 

x~(t) - ~ x~(t - s) dur >~ 0 for 1 ~< i ~< n and t ~> 0. The aim of this section 
is to present some sufficient conditions to guarantee this property of 
solutions to our model equation (2.1). 

Our first result is as follows. 

Theorem 3.1. Assume that 

(H10) rii(s) - 2~ui(s), 1 <~ i <<. n, are monotone nondecreasing. 

Then for an 2' q) = (~ol,...,(p,), q)ie B C ( ( - o o ,  0], R), there exists a unique 
solution (xl(t),..., xn(t)) o f  Eq. (2.1) through (0, (p). Moreover, i f  h i ( t ~  0 
for all t>>.O, cpi(s)~>0 for s<<.O and ~ o i ( O ) - ~ o i ( - s ) d u i ( s ) > ~ O  for 
l<~i<~n, then xi(t)>>.O and x ~ ( t ) - ~ x ~ ( t - s ) d u i ( s ) > l O  for t>10 and 
l <~ i <~n. 

To prove this result, we need the following. 

Lemma 3.1. Suppose that 

(i) f :  [0, o o ) ~ R  and 
tinuous; 

qg: ( - - c o , 0 ]  ~ R  are bounded and con- 
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(ii) u: [0, o o ) ~  R is monotone nondecreasing with u(O)=O, 
u(oo )<  1, and for any bounded and continuous x: R ~ R ,  the 
function ~ z(t - s) du(s) is continuous for t >i 0; and 

(iii) q ) (O)=~ (p(-s)  du(s) + f ( 0 ) .  

Then the equation 

f 
! 

x ( t ) =  x(s) d u ( t - s ) +  f ( t ) ,  t>~O 
- - o f ?  

x(t) = <p(t), t <<. 0 
(3.1) 

has a unique solution x(t) defined for all t >~ 0 and satisfying 

1 fo 
- -  max f ( t )  + 4o(s) d u ( t -  s) Ix(t)l <~ 1 - u(oo) o ~ ,  - ~ o  

Moreover, x(t)>~O for t>~O if f(t)>>.O for t>~O and ~o(t)>~O for t<~O. 

Proof. Equat ion (3.1) is equivalent to the following integral 
equation: 

x(t) = x(t - s) du(s) + F(t), 

x(0)=v(0) 

t~>0 
(3.2) 

where 

F(t)=S(t)+  (s)du(t-s) 

For  any given T >  0, let M = maxo.<,_< r I F(s)l. Define a function sequence 
{x n} on [0, T] as follows: 

x~ = F(t) 

f: xn(t) = x(n-1) ( t - s )du(s )+F( t ) ,  n = 1, 2,... 

It is easy to prove that  

Ixn( t ) -  x"-  l(t)l <<. Mu"(o~ ) 

and 
M 

I x n ( t ) l  ~ - -  
1 - u ( o o )  
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Therefore, u(oo)< 1 implies that {x~(t)} converges to a function x(t) 
uniformly, which solves Eq. (3.2) and satisfies Ix(t)[ ~< M/[1- u(oo)]. T is 
any given positive number, and thus the sequence {x n} converges to a 
solultion of (3.2) uniformly on any compact subset of [0, oo). Obviously, 
i f f ( t )>~0  for all t~>0 and ~0(s)~>0 for all s~<0, then x~(t)>~O for all t~>0 
and all integers n. Therefore l i m , ~  x~(t)=x(t)>>-O. This completes the 
proof. 

Now we are in the position to state the proof of Theorem 3.1. The 
following proof is constructive and, therefore, provides a computational 
procedure for finding the solution. 

Proof of Theorem 3.1. It is easy to prove that Eq. (2.1) is equivalent 
to 

where 

that is, 

; [ ; J x~(t) = xi(t-s) dui(s)+e -~n (pi(O)- (Pi(-s) dui(s) 

j ~ l  

Ir~(s), if i~ j  
rij(s)=~ru(S)--2iui(s), if i=j 

xi(t) = xi(t-s) dui(s)+e -~'' ~pi(O)- (p,(-s) dui(s) 

+ e -;"( '-") xj(u-s) d?o(s) du 
/ =  1 

+ f' e-~i(' ,) hi(u) du + f~(t) 
Jo 

where 

fi(t)  = fo e-~'(t-~) f ;  L ~pj(u-s)d?o.(s)du 
y 1 

We construct now a function sequence {x~}) defined by 

(3.3) 

(3.4) 

x~ = x~ du~(s)+Fi(t), t>~O 

x~ = q,(O, t ~< o 
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n t u 

fo- +j~l= e ~,(,-s) x l ( u - s )  dfo.(s)du+ F,(t), 

x~(t)=~o(t), 

GyiJri and Wu 

for k/> 1, where 

F i ( t ) = e - ~  I~o~(O)-- f ~  q~( - s )  du~(s) 1 

t >>.O 

t<<. O 

+ e ,~,(t u) hi(R ) e-;'i(t .) q~j(u-- s) drij(s ) du 

This sequence is well defined by Lemma 3.1, and for any T >  0, we have 

Ix~ <~ N,, 0 <~ t <~ T 

where 

1 [ ] max ]Fi(t)] + ~o~(t-s) duz(s) N, 1 - u i ( T )  o<~<~r 

From the definition of x] and x~ it follows that 

x~( t ) - x~  [ x l ( t - s ) - x ~  dR,(s) 

+ e ~'(' u) x~ - s) dFij(s) du 
j=l  

and therefore by using the same argument for Lemma 3.1, we have 

I x ] ( t )  - x ~  ~ - -  1 sup e ~i(~- u) x~ - s) d?~(s) 
1 - u i ( T )  o~o~, i=1  

Mi 
sup N i d~(s) du 

1 --f(T)j l o~.o~, 

MiNi ~" ~/(T)t 
1 - u i ( T )  j~=l " 

<~ NKt 
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where 

M i  = m a x  ~ ~  
o<~t<~ T 

K = m a x  Mi 
j = l  

N =  m a x  N i 
l <~i~n 

Generally, suppose that 

N ( K t #  
Ixk--t( t)--xk 2(t)l ~<(k- 1)! ' O<<.t~T 

then by using the same argument for Lemma 3.1, we obtain 

Ixf(t)- xf x(t)l ~< - -  
1 ,7 t 

• jx2-1(.-~)-x~ ~(.-~)tde~(~)d~ 

.< ~ , ( r ) , _ 2  (;-~)~ [ X ( u - ~ ) ]  ~-~ d~o.(~) d ,  

(Kt) ~ 
<~ N - - ,  O ~ t <<. T 

k! 

Therefore, by induction on k, we claim that 

N.(K-~t] k, 
max IXki(t)-- xki - l(t)l O ~ t ~ T 

l<~i~n k .  

from which it follows that the sequence {x~} converges to a function {xi} 
which solves Eq. (3.3). Evidently, ~'o e-~"(t u) ~ x~ l ( u -  s) dF~(s) du is 
nonnegative provided that x~- I  is nonnegative, and by induction as well 
as Lemma3.1, we know that x~(t) and x ) ( t ) - ~ x ~ ( t - s ) d u i ( s )  are 
nonnegative for l<~i<<.n, k = l ,  2 ..... and t~>0, and hence, xi(t)>>.O, 
~ x~(t - s) dui(s) >~ 0 for 1 ~< i ~< n and t >~ 0. This completes the proof. 

The previous result imposes a strong assumption (H10) on the transit 
time distribution function rzi(t) and the function ui(t) reflecting the "active" 
feature of the compartment C~. This assumption essentially requires that ri~ 
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and ui have the same jump points and, therefore, excludes the following 
simple equation: 

d 
~ [ x ( t ) - a x ( t - r ) ]  = - c x ( t ) + b x ( t - a ) ,  t>~O (3.5) 

where a, b, c ~> 0 and 0 ~< a ~< z are constants. For this scalar equation, we 
have the following. 

Theorem 3.2. I f  

ae c~ < 1 and ace c~ < be c~ 

then the set 

q~= @ e C ( [ - r , O ] ,  [0, o o ) ) ; @ ( O ) - a @ ( - v ) - a c e  c~ eC"@(u) du>O 

contains nonidentically zero functions, and for all ~o e q~, the solution x(t) of  
Eq. (3.5) through (0, qo) remains positive for t >~ O. 

Proof. By integration, we obtain 

x ( t ) = a x ( t - r ) + e  ~i q o ( O ) - a ( p ( - z ) - a c  eCSx(s-z )ds  

;: ] + b eCSx(s- a) ds (3.6) 

for all t ~> 0. 
For  t e  [0, r ]  and s t  [0, t], one has s - r ~ < 0  and x ( s - z ) = ~ o ( s - z ) .  

Since ~0 E ~, we find 

~ o ( O ) - a ~ o ( - r ) - a c  eC 'x ( s -~)ds  

f2 = ( p ( O ) - a ~ p ( - r ) - a c  eC~qo(s-z)ds 

>>.~p(O)-a~o(- z ) - a c  eCS(p(s- z) ds 

0 

=qo(O)--a~o(--r)--aceC~ f e~"~o(u) du>O 
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In this case from Eq. (3.6), it follows that 

x ( t ) > b e - - "  e C S x ( s - a )  ds (3.7) 

for all t~ [0, 7]. Since x ( t ) = ~ p ( t ) ~ O  for - r < ~ t ~ O ,  by (3.7) we find that 
x(0) > 0. 

We now show that x ( t ) > 0  for all t~ [0, v]. Otherwise there exist a 
t i e (0 ,  7] such that x ( t l ) = 0  and x ( t ) > 0  for O<~t<~tl. But in this case, 
Eq. (3.7) yields 

x ( t l ) > b e  "~ Jo eCSx( s -~ )ds>~O 

which is a contradiction. Thus x ( t ) >  0 for all t ~ [0, 7]. 
For t > 7, we have 

- a c  e C S x ( s - r ) d s + b  eC(U+~ du 
- -  Cr  

;o fo 
= - ace ~ e~~x(u) du + be C~ eC"x(u) du 

- - r  - - o -  

+ (be c~ - ace ~~) e~"x(u) du + be C~ eC"x(u) du. 
- - T  

Thus, Eq. (3.7)yields 

I ~~ 
x ( t ) = a x ( t - ~ ) + e  " ~ p ( O ) - a ~ o ( - r ) - - a c e C ~  eC~p(u) du 

- - v  

+ be ~~ e~"q)(u) du + - ace ~ ] e""x(u) du 

+ e - " b e  c~ d " x ( u )  du 

for all t ~> r. But (p ~ ~ and hence 

x ( t )  > ax( t  - 7) + e - " ( b e  C~ - ace c') e~"x(u) du 

+ e  "be ~~ e ~ x ( u )  du, t>~r (3.8) 

Since x(t)~>0, - r~<t~<r ,  and x ( r ) > 0 ,  by an argument similar to that 
given above and (3.8), we find x ( t ) > 0  for all t~>r and the proof is then 
complete. 
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As an impor tan t  corollary to the following generalization of  the closed 
compar tmenta l  system, 

d 
dt [-x(t) - axc(t  - z)]  = - b x ( t )  + bx( t  - a), t >>. 0 (3.9) 

where a >~ 0, 0 ~ a ~< z, and b ~> 0 are real numbers,  we get the following. 

Corollary 3.1. I f  ae b~ < 1. Then for  all (p ~ 450, where 45 0 is defined by { ;o } 
450 = ~ b s C ( [ - z ,  0] ,  [0, o e ) ) ; ~ b ( O ) - a O ( - z ) - a b e  b~ eb"O(u) d u > O  

the solution x ( t )=x(~o) ( t )  o f  Eq. (3.9) through (0, qo) is positive for  t >~O. 

Remark  3.1. As we found, if each compar tment  produces or swallows 
material, then the model  equat ion becomes a neutral  equation, as opposed 
to the classical case where model  equations are retarded functional differen- 
tial equations,  and the study of the nonnegative proper ty  of solutions turns 
out to be very difficult and requires further investigation. 
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