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Two fundamental inequalities are derived for neutral functional ditferential equa- 
tions with stable D-operator. These inequalities provide some exponential estimates 
about the relation between solution operators and D-operators, an essential charac- 
terization of neutral functional differential equations, and an effective tool for the 
application of Liapunov’s direct method and Razumikhin techniques to bounded- 
ness, stability, and convergence of solutions. F, 1991 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to establish two basic inequalities for 
functional differential equations (FDEs) 

f W,) =f(f, -xt), 

where D: C([-r, 01, R”) -+ R”, j’: R x C([-r, 01, R”) -+ R” are con- 
tinuous, and X, is the usual notation for FDEs. These inequalities involve 
some exponential estimates with respect to the solution operator x, and the 
corresponding D-operator. They will provide an essential characterization 
of neutral FDEs, and an effective tool for the application of Liapunov’s 
direct method and Razumikhin techniques to boundedness, stability, and 
convergence of solutions. 

The motivation of this study comes from the investigation of the neutral 
equation 

$ [x(t) - cx(f - r)l = At, x(t), x(f - r)), 

where 0 <c < 1, g: R x R x R + R is continuous and satisfies the order 
relation 

g(f,x, Y)GO if 06 y < x. 
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A prototype is 

f [x(t)-cx(t-r)] = -h(t, x(t))+h(t, x(2-r)) (1.2) 

with 

h:(t,x)ERxR+h(t,X)ER continuous and nondecreasing in x. 

Equation (1.2) can be considered as describing the motion of a com- 
partmental system with one pipe and one compartment producing material 
itself (see, e.g., Gyiiri [2]). For the retarded equation case (c = 0), boun- 
dedness of solutions and convergence of orbits to equilibria can be 
obtained via an invariance principle of Liapunov-Razumikhin type (see, 
e.g., Haddock and Terjeki [3]). However, for neutral equations (in the 
case c # 0), very little has been done along these lines. Available literature, 
based on the inequality 

Ilx,Il G be-‘* Ilxoll + p sup IDx,I (1.3) 

(where b, p, and a are nonnegative constants), allows one to deal with the 
boundedness, stability, and convergence of solutions in the case where the 
ordinary part dominates the functional part such as 

g(t, x, Y) < 0 if 0 < y < x. 

But this essentially excludes such equations as those describing com- 
partmental systems. 

To lay the foundation for a qualitative theory of NFDEs whose ordinary 
parts do not dominate the functional parts, we will derive two fundamental 
inequalities, 

IlxJ <be-” llxoll + (p - qcy’) sup IDx,I 
OSS<,r 

(1.4) 

and 

llx,ll < bePar llxoll + (p - qeey’) sup e-B(r-s) IDx,I, 
O<s<t 

(1.5) 

where b, p, q and a, /I, y are nonnegative constants. They indicate, more 
precisely than (1.3), how properties of D reflect some general property of 
the solution operator to NFDEs. In these inequalities, whether q is zero or 
not provides an essential classification of retarded equations and neutral 
equations; the case where q # 0 corresponds to a neutral equation which 
can not be reduced to a retarded equation. The irreducibility condition 
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q # 0 plays an important role in qualitative thery of NFDEs. By inserting 
the term -qe -i” in inequality (1.3) we are able to apply Liapunov- 
Razumikhin methods to such irreducible neutral equations as (1.2) to 
obtain some stability, boundedness, and convergence results. It is interest- 
ing to note that these results for irreducible neutral equations can not be 
applied to retarded equations. 

At this point we find it convenient to introduce some fundamental 
notation. Let R" denote the real Euclidean space of n-vectors and let 1.x 
denote the norm of the vector x in R". Let r 3 0 be given, and let 
C= C( [ -r, 01, R") denote the space of continuous functions from the 
interval C-r, 0] into R". For 4 E C, the norm of 4 is defined by 

Suppose x: [ -r, cc ) + R" is continuous. Then for any t B 0, x, E C is 
defined by x,(,s)=x(t+s) for -r d s 6 0. We consider the following 
neutral functional differential equation 

f D(x,) =f(t, x,) (1.6) 

with the initial condition 

x, = 4, (1.7) 

where t 2 a and f: R x C -+ R" is continuous. We assume D: C -+ R" is a 
bounded linear operator of the form 

W = 4(O) - I” C44@14(@ -I 

in which p is an n x n matrix, -r G 8 < 0, whose elements are of bounded 
variation and 

Var p-+0 as s +O. 
c-s,01 

Under the above assumptions, the solution, denoted by x(a, #), of initial 
value problem (1.6)-(1.7) exists. We further assume the uniqueness, con- 
tinuous dependence, and continuation of the solution of the initial value 
problem (1.6t(1.7). For details we refer to [S]. 
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2. FUNDAMENTAL INEQUALITIES 

Throughout this paper, we always assume that the D-operator is stable. 
Then the zero solution of the homogeneous difference equation 

DY, = 0, t>O (2.1) 

y,=f$EC,:= {cJEC: Dd=O) (2.2) 

is uniformly asymptotically stable. Therefore there are n functions 
41, 42, .“> 4n such that D@ = I(n x n identity matrix), where @ = 
(cj,, #*, . . . . #n) (see, e.g., [IS, p. 2811). The operator defined by 

Y=I-SPD 

is a continuous projection Y: C + C,, and (2.1) defines a strongly con- 
tinuous semigroup of linear transformations To(t): C, -+ C,, t 2 0, by 

To(t)ti = Y,($) for t>O,$ECD. 

Again, see [S]. 
Now consider the nonhomogeneous equation 

Dvr = h(t), t>O (2.3) 
with the initial condition 

Y,=#EC, (2.4) 

where h E C( [0, co), R”). According to [S, p. 2811 we have the following 
result. 

LEMMA 2.1. There exist constants a and b so that, for any q5 E C and 
he C([O, oo), R”), the solution to (2.3)-(2.4) satisfies 

II ytll d aebtCI1411 + sup Ih( I. 
o<s<t 

Let a, be the order of the semigroup T,(t); that is, 

a ,=inf{aER: there is a K=K(a) such that IIT,(t)jl <Ke”‘, t>O}. 

It is known [l] that the stability of the D-operator is equivalent to a, < 0, 
which turns out to be equivalent to the inequality 

II Y,II 6 be-“‘IMI + p sup Ih(s)I 
O<s<t 

(see [S, p. 2871). The following result shows the above inequality can be 
strengthened significantly. 
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THEOREM 2.1. If D is stable, then there exist constants h, p, q > 0 and 
a > 0 such that p > q 2 0 and, ,for any h E C( [0, nj ), R”), each solution ~9 of 
the nonhomogeneous system (2.3)-( 2.4) satisfies 

II y,l/ < bepLlr lldll + (P - e “‘q) sup lh(s)l. (2.5) 
osG,<r 

Moreover, q # 0 whenever Y # 0. 

ProoJ: Let y,(a, 4, h)(O)= y(t; a, q4 h) denote the solution of (2.3) 
through (a, 4). By the superposition principle of solutions of linear systems 
and (2.3) with t = 0, we have 

At; 0, 4, h) = ,v(t; 0, W, 0) + At; 0, @W, h) 

= y(t; 0, Q% 0) + y(c 0, @h(O), h). 

Since D is stable, a, < 0. This implies that there exist constants L > 1 and 
cc>0 so that L I)YII epar > 1 and IITD(t)qbll d Le-” 11411 for any 4~ C,. 
Therefore, 

II y,(O, W, ON G Let” II !&II <L II YII e-“’ 11411. 

Next find a (T > r sufficiently large so that 

L I(YyII e-*“e”‘=L*<l. 

(2.6) 

For any t 2 0, there exists a nonnegative integer j so that ja < t < (j+ l)a, 
and, thus, by the superposition principle we have the decomposition 

y(t; 0, @h(O), h) = y(t;h y,,(O, @h(O), h), h) 

= y(c jo, WO), h), 0) + At; jo, @h(jo), h). 

According to Lemma 2.1, we can find constants c, d > 0 so that 

II Y,GJ, W&h h)ll G ce”‘-j”‘(l + Il@lI 1 SUP I&)l (2.7) 
j0 < S < I 

for all t > jo, and c and d can be chosen so that 

Thus, 
ced”(l + ~~@~/)>2(1-L*)e~‘“L* II@pII. (2.8) 

I At; jay @WL h)l d ce”“(l + II@lI 1 sup Ih(s)I (2.9) 
jcT<SGI 

for ja d t 6 (j + l)[~. On the other hand, 

I v(t;io, WjgK’, @h(O), h), 011 = I At -@; 0, !J’Y,,,@, @h(O), h), 011 
< Lep”“-j”’ )I Yyj,(O, @h(O), h)ll 

< Lep”“-‘“’ II YII II y,,(O, @h(O), h)ll. (2.10) 
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Therefore, by using (2.9), (2.10) as well as 

and considering the cases t + s > ja and t + s < ja, we obtain 

II ~~(0, @W), h)ll d LP ep a(r-io) II !Ul II Yj.r(O, @h(oL h)ll 

+ced”(l + Il@Il) sup Ih(s 
ja<sCt 

Using the above inequality at t = jo, (j- 1 )a, . . . . cr, we get 

II Yjo(O? @h(o)F h)ll 

< [Lear epaa II YII 1’ IICPII Ih(O)l 

+ {ILerrepcrujl(YII]i-l+ ... +[Le”‘e~‘“IjY~~]+l~ 

x (1 + II@11 1 cede sup Wbjl 
O<s<ja 

<[L*‘II@II +ced”(l+ ll@ll)(l-L*j)/(l-L*)] sup IA(s)\. 
O<S<f 

Therefore, from the previous decomposition and the estimates (2.7) and 
(2.10), we get 

ly(t; 0, @h(O), hjl <L II!PII e-a(‘piu)[L*i I/@([ + ced”(l + ]l@lj) 

x (1 - L*‘)/( 1 -L*)] sup I/r(S)] 
O<S$f 

+ced(‘-‘“‘(1 + II@/))) sup /h(s)/ 
joSs<t 

6 L )I YyII [eil” ‘* /~@~~+ced”(l+~(@P(~)(l-ej’“L*)/(l-L*) 

+ cedo(l + ll@ll)l sup IQ)l. 
O<s<t 

From ja < t < (j + 1 jo, it follows that 

and, thus, 

j<’ and j> t/a- 1, 
cr 

) y(t; 0, @h(O), h)l d L 1) Yy(I [e”‘“)‘” ‘* e-lnL* /)@I1 

+ced”(l + ll@l])(l -e”‘“““L’)/(l -L*) 

+ cedo(l + II@11 )I SUP I&N. 
OGS<t 
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By (2.8), we obtain 

Iy(t;O,~h(O),h)J,<L/IYll Ccedu(l+ll@ll)l(l -L*)+cedu(l+l/@/l) 

-ced”(l + li@ll)/2,, L*, e’rn)‘“L*] sup Ih( 
O<J<f 

where 

< [K, -K, em “1 sup Ih(s 
OGJ<r 

K,=ced”LII~YJ((l+llQjll)/(l-L*)+ced”(l+II~(/), 

Kz = ced”L 1) YyI1 (1 + I/ Yll)/2( 1 -L*), 

and 
-In L* 

Y= -----=a- ML I/ yll e”‘) < tl. 
0 0 

It follows that 

I At; 0,4, h)l <Let’* II YII II& + CK, - K2 e-y’l sup Ih( 
OGS<f 

<be-“’ llill + (P-W”‘) sup Ih(s 
O<s<t 

where b = L I( !P’(/ ear, p = K,, q = K,, and a = ~1. The proof is completed. 

THEOREM 2.2. If D is stable, then there exist constants B, P, Q > 0 and 
~1, /I, y > 0 such that a > y and for any h E C( [0, co), R”), any solution y of 
the nonhomogeneous system (2.3)-(2.4) satisfies 

11 y,I) Q Be-” I[&/ + (P-eeY’Q) sup ePPCrPs) IA(s)/. (2.11) 
O<SG( 

Moreover, Q > 0 whenever Y # 0. 

Proof: In the argument of Theorem 2.1, we have proved that there exist 
constants L > 1 and a > 0 so that L (I !PII eear > 1 and 

II Y,(O, W, ON <Lee”’ II Wll G L II VI e-“’ 11~11 

Evidently, we can find a constant (T > r sufficiently large so that 

L I(Yll ep”“e”‘=M< 1. 

For this given M, choose /I > 0 so that Meflu < 1. Let z(t) = 
y( t; 0, @h(O), h). For any t 2 0, there exists a nonnegative integer j so that 
ja<t<(j+l),, and thus 

z(t) = y( 1; ja, YZ@, 0) + y( t; ja, @h(ja), h). (2.12) 
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Acording to Lemma 2.1, we can find constants c, d > 0 so that 

II y,(hh YKb), h)ll G cf? d+io)(l + II@I\) sup (h(s)\ 
ju<s<t 

for all t > Jo, and c and d can be chosen so that 

Ne2@” > (1 - Mea”) 11 Yv/I eBO, 

where 

N= ced”(l + II@Il). 

Therefore, 
(2.13) 

for ja d t < (j + 1)cr. On the other hand, 

( y(t; jo, Yzj”, 0)l d Le-‘(‘pJu) 11 YI( llz,,ll. (2.14) 

Hence, by decomposition (2.12) and estimates (2.13) and (2.14) we get, for 
jo<t<(j+ l)a, 

I(z,(I < Lezr e-“(‘-j”) II YII IIZ/A + N sup Ih(s (2.15) 
ja<s<r 

Specifically, we have 

IIzcj+ l)ol/ Q ~4 ll~/A + N sup Ih(s)I. 
ju<sC(j+l)b 

This inequality implies, by induction on j, 

j-l 

llzjoll G Mi llz~ll + N 1 Mk sup I&N 
k=O (j-I-k)a<s<(j-k)a 

< Mj I(@11 Ih( + NePC’-(jp lb1 sup e-8(t-s)Ih(,s)I 
O<S<f 

1 - (Me@)j 
d Mj Il~Dll Ih(O)l + Ne28” 1 _ Meso sup e-ac’p”‘Ih(s)l 

O<s<t 

< MJ )I@11 eBr+ Ne28” 
[ 

1 - (Me@“)’ 
1 - MP 1 sup e-B(t-S)\h(s)I 

O<S<f 

< (Mes”)j I(@,11 eSrr + NezB” 
1 - (MeB”)j 

1 - Mes” 1 sup ecp”pS)Ih(s)I 
O<S$f 

< [u- Ve('n(MeBu)la)r] sup e-8(rPs) Ih(s 

O<s<t 
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where U = Ne’““/( 1 - Me”“) and P’= Ne”‘“/( 1 - MeB”) - /1@11 eliO. There- 
fore, 

llz,Jl < Lezr 11 YyJ1 [U- Ve(‘n’ME’i”!‘n)r] sup P 8’r .‘I Ih( + N sup Ih( 
0 < ., -s , ,I7 c .s c I 

6 [P- Qeee7’] sup e M’ “l/z(s)l, 
O<.Sif 

with 

P = Lezr I( !PIl U + Ne”“, 

Q = Lezr II Yl( V, 

and 

y= - ln( Mea”) < a 
0 

Hence. 

II Y,II G L II U ee’ 11~11 + (P- QepYr) sup e-scr-s)Ih(s)J. 
O<s<t 

This completes the proof. 

Evidently, inequality (2.11) provides more information than inequality 
(2.5) regarding the dependence of the solution yI to Eq. (2.3) on the non- 
homogeneous term h(t). As we will see in next section, qualitative results 
can be obtained by employing (2.11) to infinite delay retarded equations; 
whereas, it is difficult, if not impossible, to obtain the same results by using 
(2.5). However, many qualitative results depend on the value of P in 
inequality (2.11) which usually is larger than p in inequality (2.5), and 
therefore qualitative results based on (2.5) often are more accurate than 
those based on (2.11). 

3. REMARKS AND APPLICATIONS 

As we will find, constants p in inequality (2.5) and P in inequality 
(2.11) are of paramount importance for qualitative analysis of the neutral 
equation (1.6). This particularly is true for applications of Liapunov- 
Razumikhin techniques to stability, boundedness, and invariance 
principles. In some simple cases, the calculations can be accomplished 
specifically. For example, considering the D-operator defined by 
DqS = b(O) - C&---r), where C is an n x n constant matrix, we have the 
following two results. 
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CLAIM 3.1. g IC( < 1, then p= l/(1 - ICI). 

CLAIM 3.2. For any positive c1-c -1n 1 Cl/r, (2.11) holds with 
P=1/(1-~C~e”‘).Moreouer,Q=~C(e”‘/(l-(C(ea’),andQ,~>0,a>~if 
CfO. 

Proof of Claim 3.1. Let (j - 1 )r 6 t <jr for some integer r. Repeating 
the equality 

x(t) - Cx(t - r) = h(t) 

at t, t - r, . . . . t- (j- l)r, we get 

Ix(t)1 G ICI lx(t - r)l + Ih( 

Q ICI’ (x(t-2r)l + ICI Ih(r-r)l+ Ih(t)l 

< ICI3 Ix(t-3r)l + ICI2 Ih(t-2r)l + ICI Ih(t-r)l + Ih( 

< ICI’ Ix(t-jr)l+ JC(jp’ Ih(t- (j- 1)r)l + lC1jP2 Ih(t- (j-2)r)l 

+ ... + ICI lh(t-r)( + Ih(t)l 

< ICI’ 11~11 + [lC(j-‘+ ICljp2+ ... + l] sup [h(s)1 
OGS$t 

1 - ICI’ 
6 ICI”’ II411 +1- sup Ih( 

O<S<f 

~eprCp’n’C”‘l lldll + 
C 

sup Ih(s 
O<s<t 

Hence, 
-1n ICI 1 

b= 1, ICI a=- 
r ’ p=l-(cI’ q=l-IcI. 

This completes the proof. 

Proof of Claim 3.2. Let (j - 1 )r d t <jr for an integer. Then we have 
j-l 

lx(t)1 < ICl’Ix(t--jr)1 + c IClk Ih(t-kr)l 
k=O 

j-l 

d lCl”r ~~cj~~ + c (ICI ear)k sup e-z”-s)lh(s)I 

sup e pa(t-S)lh(~)I 
O<SGf 

~e-MCl/~)~ ~~~~~ + 1 -(ICI eYICI ear)Vr sup e-or+r~lh~s~l 
l-lCIe”’ OCS<f 

This completes the proof. 
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Remark 3.1. The above argument reveals an interesting fact about the 
classification of functional differential equations. Whether q is zero or not 
provides an essential characterization of retarded equations and neutral 
equations. In fact, if (1.6) is a retarded equation, then the exponential 
estimate (2.5) in Theorem 2.1 holds true only if q = 0 and (2.11) in 
Theorem 2.2 holds true only if Q = 0. 

Motivated by this observation, we introduce the following concepts 

DEFINITION 3.1. The D-operator (or neutral equation (1.6)) is irre- 
ducible if (2.5) holds with q > 0. 

DEFINITION 3.2. The D-operator (or neutral equation (1.6)) is strongly 
irreducible if (2.11) holds with Q > 0. 

In the qualitative analysis of neutral equations, the irreducibility assump- 
tion (q # 0 or Q # 0) plays an important role. To illustrate the significance 
of this irreducibility assumption, we present the following boundedness and 
stability result. For boundedness and stability definitions, we refer to [S]. 

THEOREM 3.1. Suppose D is irreducible and ( DI$, f (t, 4)) < 0 for all 
(t, 4) E R x C with lldll ,< p 1041. Th en solutions of (1.6) are uniformly 
bounded. Moreover, if f(t, 0) = 0, then the zero solution is uniformly stable. 

Prooj Let x(t) = x(t; CJ, 4) be a solution of (1.6), and set 

M=max( IIDII 11~11~ b lMll/q~ 

and 

W(t) = max{ V(Dx,), M2}, 

where (ID(I is the norm of bounded linear operator D: C+ C and 
V(x)= 1x1* for all XER”. Then we assert 

for all t B rr. To prove this assertion, it s&ices to prove W(t) < I%‘(G) for all 
t 2 c. By way of contradiction, if this is false, then by a standard com- 
parison principle we can find a real number r so that W(s) d W(r) for all 
a<s<r with D+ IV(r)>O. For this given t, we claim that V(Dx,) 2 M2. 
Otherwise, W(t) = A4 for all t E [r, t + h], where h > 0 is sufficiently small, 
and, thus, D+ W(z) =O, which is contrary to Df W(T) > 0. So IDx,( 2 A4 
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and thus W(r) = V(Dx,). On the other hand, W(S) < W(r) for c <s < 7 

implies lDx,( < (Dx,( for 0 <s < 7. Now, find a sequence t, + O+ so that 

D’W(7) = lim 
W(7 + t,) - W(7) 

n-m t” 

= lim 
W(7 + t,) - V(Dx,) 

If there is a subsequence { tn,} G t,> so that W(r + rnk) = M, then IDx,l> M 
implies 

D’W(t)= lim A-W,)< lim M--MzO 
nk - cc t nk ‘rink-cc tnk 

which is contrary to D+ W(r)>O. Therefore 

W7 + t,) = Wx,+J 

and 

D+W(t)= lim W’xr+J- VW= p(1,6)(Dx 
tn 

) 
T . n-m 

This implies the existence of a 7 2 (T so that 1 Dx,l d I Dx, 1 d M for c d s d 7, 

and V(,,,(Dx,) > 0. However, by (2.5), we have 

IIx,II <be-“(‘p”’ ll$ll +(p-qe-“(“-“‘) IDx,l <p IIDxrll. (3.1) 

By our assumption, this implies p ( ,.6j (Dx,) < 0, which yields a contradic- 
tion. Therefore, IDx,l d M for all t k rr. From (2.5) it follows 

llxrll G b 11411 + PM. 

This completes the proof. 

The next result can be proved in a similar fashion. 

THEOREM 3.2. Suppose that D is strongly irreducible and 
(D#,f(t,g)))<Oforall(t,d)ERxCwith ll~ll<PID~l. Thenallsolutions 
of (1.6) are bounded. Moreover, the zero solution is uniformly stable if 
j-( t, 0) = 0. 

Remark 3.2. In the argument of Theorem 3.1, a key step is the verilica- 
tion of (3.1) in which the irreducibility assumption q # 0 is crucial. There- 
fore, it is interesting to note that the argument can not be applied to 
retarded equations. 
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Remark 3.3. Stability conditions in Theorem 3.1 and Theorem 3.2 
depend on the values of p and P. As we noticed in Claim 3.1 and Claim 3.2, 
P usually is larger than p, and therefore stability results based on (2.5) are 
more precise than those on inequality (2.11). 

As an illustration, consider the scalar equation 

f [x(t) - cx(t - r)] = -g(r, x(t), X(f -r)), (3.2) 

whereO<c<l, g:RxRxR-+Riscontinuous,and 

(i) g(t, x, u) d 0 for all x, y, t E R with x < y, 

(ii) g(t,x, y)aO for all x, y, PER with x3~. 

Obviously, 

<W> s(4 4(O)> 4(-r))> = -[NJ) - d(-~)l A4 4(O), f$-r)). 

According to Claim 3.1, D# is irreducible with p = l/( 1 - c). Consider any 
given I$ E C with 

I4 -r)l d 
14(O) - 4-r)I 

l-c 

Four cases can occur: 

Case 1. q5(-r)aO and 4(O)-cq5-r)>O. 
In this case, (1 - c)b( - r) Q 4(O) - c& -r) and thus d( - r) d b(O). This 

implies g(t, d(O), r$( -r)) 3 0 and, thus, 

Ci(O)-c4(-r)l dt, i(O), 4(-r))20. 

Case 2. & -r) 2 0 and d(O) - c4( -r) < 0. 
In this case, d(O) d c#( -r) d & -r). This shows that g(t, d(O), d( -r)) 

90 and, thus, 

Cd(o)-cd(-r)ldt, 4(O), #(-r))20. 

Case3. qb-r)<O and 4(O)-c&-r)>O. 
In this case, 4(O) > cd( - r) >, 4( -r). This shows that g(t, 4(O), #( -r)) 

20 and thus 

Cd(O) - 4 -r)l g(t, W), 4 -r)) 2 0. 

Case 4. & - r) < 0 and 4(O) - c& - r) < 0. 



FUNDAMENTAL INEQUALITIES 91 

In this case, - &( - r) < - [b(O) - c#( - r)]/( 1 - c); that is, (1 - c) #( -r) 
2 b(O) - c& - r). This implies 4( - Y) > 4(O), and thus g( t, 4(O), d( - r)) < 0 
which shows 

cw-M--Y)1 g(t, d(O), $er))20. 

In summary, for any 4~ C with 11411 6 Id(O)- c& -r)J/(l -c), we 
have (Dd, g(t, 4(O), d( -r))) 6 0. Therefore all solutions are uniformly 
bounded, and each constant solution (that is, the zero solution of the 
family of equations (d/dt)[x(t)-cx(t-r)]= -g(t,e+x(t),e+x(t-r)) 
for any e E R) is uniformly stable. 

Remark 3.4. For the above example, the constant P in (2.11) is 
l/(1 - ce”‘) for any given costant tl >O (see Claim 3.2). Therefore 11411 6 
P 1041 does not imply necessarily [d(O) - c&-v)] g(t, 4(O), b( -r)) 2 0. 
This indicates that certain qualitative results based on (2.11) are not as 
accurate as those based on inequality (2.5). However, inequality (2.11) does 
have certain merits over inequality (2.5). Particularly, some qualitative 
results like an invariance principle and convergence theorems can be 
established in a similar way to retarded equations by employing (2.11). The 
details will be given in a forthcoming paper [S]. 

Remark 3.5. Based on inequality (1.3) one can also derive some 
stability theorems of Liapunov-Razumikhin type as Lopes did. These 
theorems essentially require the nonnegative property of (D#, f(t, 4)) < 0 
for all d E C subject to 11~11 d (a/( 1 - c)) 1041 (a > 1 given). Unfortunately, 
11411 d (a/( 1 -c)) 1041 does not necessarily imply (D& f(t, 4)) d 0. 
Therefore these stability theorems do not apply to such neutral equations 
as (1.2) in which the ordinary part does not dominate the functional part. 

To conclude this paper, we state two asymptotic stability theorems of 
Liapunov-Razumikhin type. The basic idea for the proof is contained in 
Haddock and Wu [4] and Wu [7]. 

THEOREM 3.3. Suppose f (t, 0) = 0, the D-operator is irreducible (strongly 
irreducible), and, for each pair (u, v) with 0 < u d v < 00, one can Jind 
positive constants E = E(U, v) and w = w(u, v) such that 

(Nf(t>d))G --E 

whenever (t, 4) E R x C, u d lD(t, 411 d v, and 11~11 < p ID(d)I + w (or 
llq511 <P ID( + w). Then the zero solution is uniformZy asymptotically 
stable. 

As a simple consequence of this theorem, we get the following result 
which is a generalization of Liapunov-Razumikhin type asymptotic 
stability to neutral equations and a reformulation of Lopes’ theorem [6]. 
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THEOREM 3.4. Let f(t, 0) = 0, the D-operator be irreducible (or strong 
irreducible). Suppose thut there exists u function F: [0, x) -+ [0, x) such 
that F(s) > s for all s > 0, and that 

wheneoer llq5jl <F(p ID(Q (or ll~,4jl dF(P I D(4)l), where w is an increasing 
continuous function on [0, co) with w(O) = 0. Then the zero solution is 
uniformly asymptoticalIy stable. 

Applying Theorem 3.3 to Eq. (3.2), we get the following sufficient condi- 
tion to guarantee uniform asymptotic stability: 

for any v 3 u > 0. 
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