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ASYMPTOTIC PERIODICITY OF SOLUTIONS TO A CLASS

OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
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(Communicated by Kenneth R. Meyer)

Abstract. In this paper, we extend a convergence result due to Takác to contin-

uous maps satisfying certain monotonicity properties. Applying this extension

to the Poincaré map associated with the neutral equation

(d/dt)[x(t) - b(t)x(t - r)] = F[t, x(t), x(t - r>]

we prove that each solution of the above neutral equation tends to an r-periodic

function as ; —» oo in an oscillatory manner, where 0 < b(t) < 1 is an r-

periodic continuous function and F satisfies a certain order relation.

1. Introduction

In [9], it is shown that each solution of the scalar neutral functional differ-

ential equation

(1.1) ^-[x(t)-bx(t-r)] = F[t,x(t),x(t-r)],        t>0,  r>0,

approaches a constant as í -» oo, where 0 < b < 1 is a constant and F

satisfies the order relation F(t,x,y) < 0 if x > y, and F(t,x,y) > 0

if x < y. This indicates an asymptotic equivalence between the solution of

neutral equation (1.1) and the solution of the ordinary differential equation

(d/dt)[x(t)-bx(t)] = 0.
The major purpose of this paper is to extend this result to the following scalar

periodic neutral functional differential equation

(1.2) ^-[x(t)-b(t)x(t-r)] = F[t,x(t),x(t-r)],        t>0

where 0 < b(t) < 1 is an r-periodic continuous function and F(t,x,y)

is r-periodic in t and satisfies the above order relation. Since each solu-

tion of the ordinary differential equation (d/dt)[(l - b(t))x(t)] = 0 is r-

periodic and can be expressed as x(t) = ((1 — ¿>(0))/(l -b(t)))x(0), it is natural
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to conjecture that any solution of (1.2) tends to a multiple of 1/(1 - b(t))

as t —► oo .

Much research has been devoted to the study of the asymptotic behavior

of solutions for (1.2) with b(t) = 0 (see, e.g., [1-8, 13]) or with a constant

b G [0, 1) (see, e.g., [9, 17]). Various approaches such as the first integral, Lia-

punov function coupled with the Razumikhin technique, invariance principle,

etc. have been applied to investigate the problem of convergence of solutions.

In this paper, we take a rather different point of view in dealing with this prob-

lem. Indeed, we investigate the relation between the convergence of solutions

and the monotonicity of the associated Poincaré map as well as the structure

of its fixed point set. We will show that the associated Poincaré map enjoys

certain monotonicity properties, its set of fixed points contains a straight line

in a positive direction, and each solution of (1.2) approaches a multiple of

1/(1 - b(t)) in an oscillatory manner.

This paper is organized as follows. In §2 we extend a convergence result due

to Takác [16] for strong monotone maps to a continuous map satisfying certain

weak monotonicity properties described in assumptions (i) and (ii) of Theorem

2.1. In §3 we employ the technique in [9] and [15] to associate neutral equation

(1.2) with a retarded equation with unbounded delay in order to verify the

boundedness of solutions and the monotonicity of the associated Poincaré map

of (1.2). Applying the general results from §2 we prove that each solution of

(1.2) approaches a periodic function and the convergence occurs in an oscillatory

manner.

2. A GENERAL CONVERGENCE RESULT

Let X denote a strongly ordered space, i.e., a metrizable topological space

together with a closed partial order relation 7? ç X x X such that Int R ^ 0.

For any x, y, q e X and any subset A ç X, the following notations will be

employed: x < y iff (x, y) e R, x < y if (x, y) e R and x ^ y , x <c y iff

(x, y) elntR, A < q iff a «; q for a e A, q < A iff q « a for a e A,
A <q iff a <q for a e A , q < A iff q < a for a e A .

We consider a continuous map S : X —> X. Let E denote the set of all fixed

points of S, i.e., E = {e € X; S(e) — e}. For any given e € E, we define

Se = {x £X;e <x} and Se = {x e X ; x < e} .

The main result in this section is as follows:

Theorem 2.1. Suppose that

(i) for any eeE, S(Se) ç Se and S(Se) ç Se ;

(ii) for any e e E, there exists an integer N > 1 such that e < ¿""(^{e})

and Sn(Se\{e}) -C e for all n > N ;

(iii)   E contains a simply ordered arc given by 7: R -> X (i.e., J: E —» X

is continuous and xx < x2 implies J(tx) < 7(t2)) such that for every

x £ X there exist a, ß e K with J(a) <x< J(ß).
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Then if x e X is given such that its semiorbit 0+(x) :- {S"(x) ; n = 0, 1, 2, ...}

has compact closure, then its co-limit set co(x) := r\j>0cl\Jn>j Sn (x) Is a single

equilibrium and co(x) ç J(R).

Proof. Let x e X be given such that 0+(x) has compact closure.  Then by

assumption (iii) there exist ajel with 7(a) < x < J(ß). Since 7(E) ç E,

by assumption (i) we get 7(a) < Sn(x) < J(ß) for nonnegative integer n . This

implies that 7(a) < co(x) < J(ß).

Define

a* = sup{a e E ; 7(a) < o)(x)},        ß* = inf{/J € E ; co(x) < J(ß)} .

Then 7(a*) < to(x) < J(ß*). We want to show that a* = ß*. Suppose

not, i.e., a* < ß*. Then 7(a*) < J(ß*). Since 7(a*) and J(ß*) are fixed

points of S, by assumption (ii) we get 7(a*) « J(ß*). Therefore, we can find

a neighborhood N(a*) of 7(a*) and a neighborhood N(ß*) of J(ß*) such

that y<&z for (y, z) e N(a*) x N(ß').

If 7(a*) e ca(x), then there exists a positive integer m such that Sm(x) e

N(a*), and thus Sm(x) < J(ß*). Because of the continuity and the increasing

property of 7 , we can find a real number y* < ß* such that Sm(x) < J(y*) <

J(ß*). Applying assumption (i), we obtain S"(x) < J(y*) -C J(ß*) for all

n > m. This implies that co(x) < J(y*) <C J(ß*), a contradiction to the

definition of ß*.

Therefore if a* ^ ß*, then 7(a*) £ co(x), i.e., 7(a*) < q for all q e co(x).

By assumption (ii) and the invariance of co(x), we obtain 7(a*) < co(x). But

this contradicts the definition of a*. Therefore, a* - ß* and co(x) = J(a*) e

E. The proof is completed.

Remark 2.1. We recall that a continuous map S: X —» X is monotone if x < y

implies S(x) < S(y) for all x, y e X ; eventually strongly monotone if x < y

implies S"(x) < S"(y) for all x, y € X and n> N, where N > 1 is an integer

independent of x and y ; strongly monotone if x < y implies Sn(x) «: Sn(y)

for all x,y 6 X and n > 1 (see, e.g., [11] and [16]). Evidently, if S is

monotone, then the assumption (i) is satisfied, and if S is eventually strongly

monotone, then the assumption (ii) is satisfied. However, we should emphasize

that assumptions (i) and (ii) only require the map S preserve the order relation

between two points in X such that one of them is an equilibrium. Usually, E

is very small compared to the whole space. Consequently, the verification of

assumptions (i) and (ii) is easier than that of the monotonicity and the eventual

strong monotonicity of S. In particular, for system (1.2) we will show that the

associated Poincaré map satisfies assumptions (i) and (ii), but we are unable to

verify the eventual strong monotonicity of the Poincaré map.

To conclude this section, we should mention that Theorem 2.1 was proved by

Takác in [16, Theorem 1.3] under the assumption that S is strongly monotone.

Our proof is similar to Takác's proof. However, to replace the strong mono-

tonicity by the weak assumptions (i) and (ii), certain modification of Takác's

proof has to be made, because Takác used the fact that for a strongly monotone
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map the colimit set of a relative compact semiorbit is unordered, but we do not

know if this fact is still true or not for a continuous map satisfying assumptions

(i) and (ii).

3. Applications to the asymptotic periodicity problem

for neutral equations

Applications of the general result from §2 to differential equations require

the verification of the following conditions:

(i) the monotonicity of solutions described by assumption (i);

(ii) the strong monotonicity of solutions described by assumption (ii);

(iii) the structure of the fixed point set described by assumption (iii);

(iv) relative compactness of solutions.

In this section, we show that the above verification can be accomplished

for (1.2) by associating neutral equation (1.2) with a retarded equation with

unbounded delay and by using the Liapunov-Razumikhin technique.

We consider the following scalar neutral functional differential equation

(3.1) ^[x(t)-b(t)x(t-r)] = F[t,x(t),x(t-r)],        r>0,

where b(t) is a continuous r-periodic function and

(al) 0< b(t) < 1 for t e (-oo, +oo);

(a2) F(t, x, y) is continuous in (t, x, y) e R3, and r-periodic in t ;

(a3) F(t,x,x) = 0 for all (t,x) e R2 ;

(a4) F(t, x, y) is increasing in y when (t, x) € R2 is fixed;

(a5) for any bounded set W ç 7?3 there exists a constant 7 > 0 such that

F(t,x,y)>-L(x-y)   for any (t, x, y) e W.

Equation (3.1) has been used in the study of classical electron radiation, epi-

demics, population growth, and biological compartmental systems. The conver-

gence to constant functions as / —► oo of the solution of (3.1) in the case where

b is a constant has been investigated in [1-9, 13]. The purpose of this section

is to show the convergence to r-periodic functions as t —► oo of the solution of

(3.1) in the case where b is r-periodic.

Define C = C{\-r, 0], E ) as the Banach space of continuous functions

on [—r, 0] with a supremum norm. We introduce the following order relation

RQCxC:

ig>,y/)eR   iff   tpi6)< tf/id)   for0e[-r,O]and

c>i0)-bi0)tpi-r)<y/i0)-bi0M-r).

Evidently, 7? is a closed-order relation on C and Int R ^ 0. Therefore, C

endowed with the above-order relation is a strongly ordered space.

For simplification, we define the map 7): E1 x C —> E1 by Dit, tp) =

tpiO) - bit)tpi~r) for (i, tp) e E1 x C. Moreover for any continuous func-

tion x: [—r, oo) -> E1 and t > 0, we define xt € C by x((0) = x{t + 8) for

0€[-r,O].
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Denoting the solution of (3.1) satisfying xQ = tp by x(t, tp), we have the

following result:

Lemma 3.1. For any tp e C, we have

mitp) < xit, tp) < -—r--rMi<p),
I-bit)    KY/ -   v ' r' - I-bit)

m(tp) < D(t, xt(tp)) < M(tp)

for t > 0, where

mitp) = min I   min [I - bis)]   min   (pit), 7>(0, tp) \ ,
[i6[-r,0] T6[-r,0] J

A7(^) = max<   max [1 - bis)]   max   tp(x), D(0, tp)\ .
Ue[-r.O] T6[-r,0] J

Proof. Let x(t) = x(t, tp) and y(t) - D(t, xA. Then, since b is r-periodic,

[tin
(3.2) *(*) = J2b'(t)y(t - ir) + bll/r]+l(t)x(t - ([*] + l)r)

from where it follows that

(3.3) xit-r) = Y,bl l(t)y(t-ir) + bit/r](t)x(t-([t]+l)r).

i=i

Clearly, y(0) < M(tp). On the other hand, at any instant where t > 0 such

that v(t) = max0<s<xy(s) and v(t) > M(tp), we have

x(r - r)[l - b(r)]

[t/r] 1
2 6,-1(tMt - ir) + è[T/rl(t)x(T - ([X] + l)r) \ [I - b(t)]

<

¡=i

[T/r]

y(t),

y(r)-[l-6(r)]

and thus

xix) - x(x - r) = y(T) - (1 - 6(t))x(t - r) > 0,

from which and by assumptions (a3) and (a4), we obtain y(x) < 0. Therefore,

y(t) < M(tp) for all t > 0. On the other hand, by the definition of M(tp),

x(t - (['-] + l)r) < M(tp)/(l - b(t)) for t > 0. Therefore using (3.2) we obtain

x(t) <M(tp)/(l-b(t)). That is, we have shown that x(t, tp) < M(tp)/(l -b(t))

and D(t, xt(tp)) < M(tp) for t > 0. The other part of the conclusion can be

proved analogously.

Lemma 3.2. Let x(t, tp) denote an r-periodic solution of (3.1), and x(t, y/) be

any given solution 0/(3.1). Then

(i) tp < \p implies that xt(tp) < xt(y/) for all t > 0;
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(ii) tp < y/ implies that xt(tp) -c xt(y/) for all t > 3r. More precisely,

tp < y/ implies that x(t, tp) < x(t, y/) and D(t, xt(tp)) < D(t, xt(y/))

for all t>2r.

Proof. By Lemma 3.1, any solution of (3.1) is defined for all t > 0. Because

of the r-periodicity of x(t, tp), by assumption (a3) we have

F(t, x(t, tp),x(t-r, tp)) = F(t, x(t, tp), x(t, <p)) = 0.

Therefore, making a change of variables w(t) = x(t, y/) - x(t, ç>), we obtain

(3.4) j-([w(t) - b(t)w(t - r)] = F*[t, wit), w(t - r)],

where

(3.5) F*(t,u,v) = F(t,u + x(t, <p),v +x(t, tp))   for(u,v)eR2,

is r-periodic in t, F*(t, u, u) = 0, and F*(t, u,v) is increasing in v when

(t, u) e R2 is fixed. Therefore by Lemma 3.1 (replacing F by F*), we obtain

-m(y/-tp) <x(t, y/)-x(t, tp) < -.—rj-M(y/ -tp)
l-b(t)    Kr    f'-*v,,f'      v ' Y' - 1 -b{t)

and

m(yi -<p)< D(t, xt(y/)) - D(t, xt(tp)) < M(y/ - tp)

for t > 0. This implies conclusion (i).

To prove (ii), we assume that tp(60) < y/(60) for a 60 € [-r, 0].  By (i),

w(r + 60) - b(r + 60)w(60) > 0. If w(r + 0O) - b(r + d0)w(d0) = 0, then

w(r + e0) = b(r + e0)w(60)<w(do)

and thus at t = r + 60 , one has

^-([w(t) - b(t)w(t - r)\ = F*[t, wit), w(t - r)]

= F*[r + e0,w(r + e0),w(60)]

>0.

Therefore there exists e > 0 such that

w(t) - b(t)w(t -r)>0   for t e(r + d0,r + d0 + e].

For any given constant 7 > 2r, find a constant 7 by (a5) such that

F*[t, w(t), w(t-r)] > -L[w(t)-w(t-r)]

for all t e [-r, T]. Hence we have

-f[w(t) - b(t)w(t -r)]> - L[w(t) -w(t- r)]

> -L[w(t)-b(t)w(t-r)]

from which it follows that

w{t) - b(t)w(t -r)> [w(x) - b(x)w(x - r)]e~L{'~T) > 0
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where x is either r + 60 if w(r + 90) - b(r + 60)w(60) ^ 0, or, otherwise, any

constant in (r + 8Q, r + 60 + e]. This implies that w(t) - b(t)w(t - r) > 0 for

all t > 2r, from which and by w(t) > 0 for t > -r it follows that w(t) > 0

for all t >2r. This completes the proof.

Likewise, one can prove

Lemma 3.3. Let x(t, tp) denote an r-periodic solution of (3.1), and x(t, y/) be

any given solution of (3A). Then

(i)  y/ <tp implies that xt(y/) < xt(cp) for all t > 0 ;

(ii) y/ < tp implies that xt(y/) <C xt(tp) for all t > 3r. More precisely,

y/ < tp implies that x(t, y/) < x(t, tp) and D(t, xt(y/)) < D(t, xt(y>))

for all t>2r.

Remark3.l. In the proof of Lemma 3.2, if x(t, tp) is not r-periodic in i,then

w(t) satisfies the following equation:

j-t[w(t) - b(t)w(t - r)] = G*[t, wit), w(t - r)]

where G* : E3 -► E1 is defined by

G*(t, u,v) = F(t, u + x(t, <p),v +x(t -r, tp)) - F(t, x(t, tp), x(t - r, q>)).

Since G* does not necessarily satisfy the order relation G*(t,u,v) < 0 for

(i, u, v) e E with v < u, we cannot apply Lemma 3.1 (replacing F by G*)

to obtain the conclusion (i) of Lemma 3.2. This indicates that our argument

cannot be applied to prove the monotonicity and eventually strong monotonicity

of the Poincaré map S: C —> C defined by S(tp) = xr(tp) for <p e C in the

sense of Hirsch [11] and Takác [16].

Now we are in the position to state our main result.

Theorem 3.1. For any tp e C, there exists a constant k - k(tp) such that

(i)limt_oo[x(t,<p)-k(<p)/(l-b(t))] = 0;

(ii) either x(t, tp) = k(tp)/(l-b(t)) for sufficiently large t, or for each n > 1,

max
ee[-r,o]

jx(Hr + 9,tp)- T4^y , D(nr., xjtp)) - k(tp)} > 0

and

mm
0€[

-rn0] {*("r + 9 ' ^ ~   1 -1(6) ' D{nr ' X^i-(P)) ~ k^j < ° '

Proof. Consider the Poincaré map S: C —> C defined by S(ç>) = xr(tp) for

tp e C. Then for each (p G C, the set {Sn(tp); n > 0} = {xnr(tp); n > 0}

is bounded by Lemma 3.1, and thus is relatively compact by the well-known

property of neutral equations with stable 7)-operator (see, e.g., [10]). It is easy

to prove that a fixed point of S is an r-periodic function and the set E of

fixed points of S contains a simply ordered arc given by 7 : E -> C defined by

Ji.x){ß) = -j—^7777    for 8 G [-r, 0] and x e E.
1 -b(ti)
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By Lemmas 3.2 and 3.3, S satisfies assumptions (i) and (ii) of Theorem 2.1.

For any tp e C, we define

a(tp) = min {fl múyi - b(d)]tp(6), <p(0) - b(0)tp(-r) J

and

/?(©) = maxi   max [1 - b(d)]tp(6), <p(0) - b(0)tp(-r) \ .
[ee-[r,o] J

Then

J(a(tp))(d) < YTtW)^ - bid)MB) = 9(d),        6 G [-r, 0]

and

7)(0, J(a(tp))) = j^L - b(0). i ^    = a(9) < tp(0) - b(0)tp(-r).

That is, J(a(tp)) < tp . Likewise, tp < J(ß(tp)).

This verifies assumption (iii) of Theorem 2.1. Therefore there exists a con-

stant k(q>) such that S"(tp) — xnr(tp) —► J(k(tp)) as n -» oo. By the con-

tinuity of xt(tp) with respect to (t, tp) G E1 x C, we obtain xt(tp)(6) —►

k(tp)/(l - b(t + 6)), uniformly for 8 G [—r, 0], as / -» oo . This proves (i).

To prove (ii), we assume that x(t, <p) does not coincide with k(tp)/(l -b(t))

for sufficiently large t. If

max
0€[-r,O]

|x(«r + 6,tp)- j^^ , D(nr, xnr(tp)) - k(tp)} < 0

for some n > 1, then Sn(tp) < J(k(tp)). By Lemma 3.3, Sn+ (tp) <C J(k(tp)),

i.e.

lk_il){d)-x((n + 3)r + e,tp)>0   for0€[-r,O]

and

k(tp) > D((n + 3)r, x(n+3)r(tp)).

Therefore we can find a constant k* > 0 such that

k(tp)>k*>maxi   max [\-b(6)]x((n + 3)r + 6,<p),D((n + 3)r,x,„,,,r((p))\.
(0€[-r,O] (n-TJ/r j

That is,

Sn+\<p)<zJ(k*)<g:J(k(<p)).

Since J(k*) G Ti , it follows from Lemma 3.3 that

Sn+j(tp) < J(k*) « /(*:(?))   for ; > 3 ;

so lim^^S"^) < J(k*) <c J(k(tp)), a contradiction to limn^ooSn((p) =

J(k(tp)). Therefore

max
eei-r

^x(nr + e,tp)-T^^,D(nr,xnr(tp))-k(c>)^>0.
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Likewise, we can prove

eeïfo] r("r + 9'^~ i -1(d) ' D(nr' xnr(9)) - k^ } < ° •

The proof is completed.
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