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1. INTRODUCTION

In A serIEs of his papers (cf. [9-10, 26-29]), Mawhin developed a coincidence degree theory for
perturbations of a linear Fredholm operator of index zero. This coincidence degree theory
turned out to be a very powerful and useful tool in the study of the existence of solutions for
nonlinear boundary value problems.

In [15], Hale and Mawhin applied the coincidence degree to the periodic boundary value
problem of some neutral functional differential equations. Their method uses a continuation
principle based on the homotopy invariance of the coincidence degree. Let us recall this
property. Let X and Y be two real Banach spaces and let L: Dom(L) € X — Y be a linear
(possibly unbounded) Fredholm operator of index zero. Suppose that Q € X is an open
bounded subset and H:  x [0, 1] = Yis a homotopy of L-compact mappings (see [27, 29] for
precise definitions) such that L(x) # H(x, A) for all x € 3Q N Dom(L) and A € [0, 1]. Then the
coincidence degree d[(L, H(-, A)), Q] is a constant function with respect to 4 € [0, 1].

In this paper we study the periodic boundary value problem of a neutral functional
differential equation of the following type

%[x(t) - o)t — n] = ft, x) (.1

x(0) = x(w)
where C: R — R is a continuous w-periodic function and f:R X C([-r,0l,R) > R is a
completely continuous mapping w-periodic with respect to the first variable.

In our approach we reduce the problem (1.1) to the, relatively simpler, periodic boundary
value problem for the following retarded equation of the type

d
T x(t) = flt, x) 1.2
x(0) = x(w).

* Supported by NSERC—Canada.
t Supported by Gordin-Kaplan Memorial Postdoctoral Fellowship.

747



748 L. H. ERBE ef al.

The simplest way for such a reduction is through the following natural deformation

g[x(t) -~ Ac(t)x(t — n] = f{t, x,), Ae(0,1]
dr (1.1),

x(0) = x(w).

However, since the deformation (1.1), involves considerable modifications of the linear part,
representing the Fredholm operator L, the homotopy invariance property of the coincidence
degree, in the above formulation, is not sufficient for our purposes. In order to use such
deformations we need more general homotopy invariance, allowing ‘‘continuous’’ deforma-
tions of the Fredholm operator L as well as deformations of the perturbing map.

On the other hand, in [7, 8] Fitzpatrick and Pejsachowicz developed a degree theory for
continuous semilinear Fredholm maps of index zero. The advantage of their approach lies in
the fact that their generalizations of the Leray-Schauder degree does not. depend on the
representation of a semilinear Fredholm map f(x) in the form f(x) = Lx — F(x), where L is a
continuous Fredholm operator and F is compact. Another important advantage of this degree
theory consists in the homotopy invariance property which permits also for continuous
deformations of the linear part. Since the coincidence degree of Mawhin is defined for a more
general (unbounded) Fredholm operator of index zero it is an interesting question if it is
possible to obtain a similar homotopy invariance for the coincidence degree in this case.

In the first part of this paper, we apply the Fitzpatrick-Pejsachowicz degree theory in order
to obtain a variant of the homotopy invariance property, allowing deformations of the linear
part, for the coincidence degree of Mawhin. In the second part, we apply this homotopy
invariance property to provide a natural and unified way of extending the existence results
established for the periodic boundary value problems of certain retarded equations to neutral
equations.

This paper is organized as follows. In Section 2, we present a brief description of the
Fitzpatrick-Pejsachowicz degree theory for semilinear continuous Fredholm maps of index
zero and next we indicate how its homotopy invariance implies the forementioned homotopy
invariance of the coincidence degree of Mawhin. A continuous deformation of a closed
unbounded Fredholm operators of index zero is a continuous deformations of their graphs with
respect to an appropriate topology. Presentation of a parametrized family of unbounded
Fredholm operators as a morphism from certain vector bundle modelled on a Banach space into
a Banach space permits us to simplify the presentation and, with the use of some homotopy
arguments, to describe the direct link of coincidence degree with the setting of
Fitzpatrick-Pejsachowicz. The proof of this extension is surprisingly simple but nevertheless, as
it is presented in the Section 3, this result can produce some interesting application. Namely, the
existence of a priori bounds for the deformation (1.1), implies, by the homotopy invariance,
that the coincidence degree for the both ends of this deformation are, up to sign, the same.
Consequently, the existence results for the neutral equation (1.1) follow from their counterparts
for the retarded equation (1.2). In the Section 4, we develop the method of guiding
functions and the Liapunov-Razumikhin technique which are consequently applied to establish
the existence of @ priori bounds. The obtained results extend those due to Krasnosel’skii (18,
19], Gaines and Mawhin [9] for ordinary differential equations, and to Gustafson and Schmitt
[11], Hetzer [16, 17] and Mawhin [26, 29] for retarded equations to neutral equations.

Some examples are given to illustrate possible applications of our results.
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2. FITZPATRICK-PEJSACHOWICZ DEGREE THEORY AND HOMOTOPY INVARIANCE OF
COINCIDENCE DEGREE

We start with a brief description of the Fitzpatrick-Pejsachowicz degree theory (cf. [7, 8,
32D).

A continuous map f: X — Y, from a Banach space X into a Banach space Y, is called a
semilinear Fredholm map of index zero if f can be represented in the form f(x) = L(x) — F(x),
x € X, where L is a bounded linear Fredholm operator of index zero and F is a completely
continuous map. For given Banach spaces X and Y, let £(X, Y) denote the Banach space of
bounded linear operators from X into Y, X(X, Y) and GL(X, Y) denote the subsets of
L£(X, Y) consisting of all compact operators and all isomorphisms, respectively. GL.(X) will
denote the group of all isomorphisms of the form Id — K with K € X(X, X). An orientation is
a function ¢: GL(X, Y) — {— 1, 1} satisfying the following properties:

@ If M, M, e GL(X, Y) with M, — M, € X(X, Y), then &M,) = &(M,) if and only if
M['M, e GL}(X), where GL! = {® € GL.X); deg; s (®, B, 0) = 1} and deg; ¢ (®, B, 0) is the
Leray-Schauder degree of @ with respect to a ball B, centred at the origin and of positive
radius;

(ii) If X = Y, then &(ld) = 1.

Such an orientation can be constructed in the following way: the group GL.(X) acts on
GL(X, Y) by multiplication on the right. By choosing a representation M,, in each orbit a we
obtain the orientation function ¢: GL(X, Y) = {—1,1} = Z, by

e(M) = deg, s (M,'M,B,0) ifMea,

where the right side is the Leray-Schauder degree of M 'M e GL.(X) with respect to any ball
of positive radius.

It is well known that for a bounded Fredholm operator of index zero L: X — Y there exists
a Ke X(X,Y) such that L + K € GL(X, Y). Therefore, a semilinear Fredholm map of
index zero having the representation f(x) = L(x) — F(x) can also be represented by
Jx) = (L + K)}x) - (F + K)(x), and the problem of solving the equation f(x) = 0 is equiva-
lent to finding a zero of the compact vector field Id — (L + K) !(F + K).

Now we are able to present the definition of the Fitzpatrick-Pejsachowicz degree. Suppose
that f:X = Y is a semilinear Fredholm map of index zero having the representation
Jx) = L(x) — F(x), Q < X is an open bounded subset and L(x) # F(x) for all x € 3Q. Let ¢ be
an orientation function on GL(X, Y) and let K € X(X, Y) be such that L + K € GL(X, Y).
Then the Fitzpatrick-Pejsachowicz degree of f on Q is defined by

degep (f, Q,0) := &L + K)deg, s (ld — (L + K)™!I(F + K), Q, 0). @.1D

It was shown in [7, 8] that degg p (f, Q, 0) is a well-defined function of fand that the additivity,
excision and normalization axioms of degree theory are satisfied.

In order to present the homotopy invariance property, the following concept of semilinear
Fredholm homotopy is introduced. A semilinear Fredholm homotopy is a map
H:[0,1] x X = Y having a representation H(A, x) = L(4, x) — F(4,x), A € [0, 1], where the
map A — L(4, +)is continuous from [0, 1] to £(X, Y), L(4, +) is a bounded Fredholm operator
of index zero for all A € [0, 1], and F: [0, 1] X X — Y is completely continuous. When Q € X
is an open bounded subset, H is said to be admissible with respect to Q if L(4, x) # F(A, x) for
all (4, x) € [0, 1] x 9Q. The homotopy invariance property of the Fitzpatrick-Pejsachowicz
degree is the following.
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THEOREM 2.1. Suppose that Q S X is an open bounded set and that H:[0,1] X X — Yisa
semiline2: homotopy which is admissible with respect to Q. Then

degp p (H,,Q,0) = &(Lo + Kop)e(L, + K,)degg p (Hy, 2, 0)

where H, := H(A, ) has the semilinear representation H, = L, — F, with L, being a
bounded Fredholm operator of index zero for all 1€ ([0,1], F, being completely
continuous, K, € X(X,Y) and L, + K, e GL(X,Y) for all A€[0,1]. The number
O(H) = e(Ly + Kpe(L, + K,) € Z, depends only on the homotopy H and on ¢ and is indepen-
dent of the semilinear representation H, = L, — F,.

Let us present now the coincidence degree of Mawhin. Let L: Dom(L) € X — Y be a
Fredholm operator (possibly unbounded) of index zero. A resolvent of L is an K € X(X, Y)
such that L + K is a one-to-one mapping onto Y. The set of all resolvents of L is denoted by
CR(L). Let us fix a resolvent X € CR(L) and let Q € X be an open bounded subset. A map
F:Q - Y is called L-compact if (L + K)™'F:Q — X is compact. Let F:Q — Y be an L-
compact map such that L(x) # F(x) for all x € Dom(L) N 3Q, then the coincidence degree of L
with F on Q is defined by

d((L, F), Q] := degy s.(Jd — (L + K)T'(F + K),©,0).

If L is a bounded Fredholm operator of index zero, then L-compact maps are exactly
compact maps and it follows from (2.1) that

di(L, F), Q] = tdegrp.(f,Q,0) 2.2

where f(x) = L(x) — F(x), x € §. By theorem 2.1 and (2.2), we have the following homotopy
invariance property for the coincidence degree.

CoROLLARY 2.1. Suppose that L,, 4 € [0, 1], is a continuous family of bounded Fredholm
operators of index zero. Let Q € X be an open bounded set and let H:[0,1] X Q — Y be a
compact map such that L, (x) # H(A, x) for all (4, x) € [0, 1] x Q. Then

d[(LOv HO)a Q] = j:d[(Ll ’ Hl)s Q]
where H, := H(4, *) for 4 € [0, 1].

The advantage of the Fitzpatrick-Pejsachowicz degree lies in the fact that it does not depend
on the representation of the map f(x) = L(x) — F(x). However, in spite of the fact that in the
case of semilinear Fredholm maps, the coincidence degree is expressed by the same number (up
to the sign) as the Fitzpatrick-Pejsachowicz degree, it encompasses the more general situation
of unbounded Fredholm operators. The aim of this section is to present the homotopy
invariance property (admitting deformations of the operator L) for the coincidence degree of
Mawhin in this general case.

Let L: Dom(L) C X — Y be a closed Fredholm operator of index zero. We denote by
Gr(L) = {(x,y) € X x Y; x € Dom(L), L(x) = y} the graph of L. By assumption, Gr(L) is a
closed subspace of X x Y and we have the following commutative diagram:

Gr(L)
Pry 1 pry
X D Dom(L)—L.'y
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where pr, and pr, are (continuous) projections on the first and the second component
respectively.

LemMa 2.1. Let L: Dom(L) C X — Y be a closed linear operator. L is a Fredholm operator of
index zero if and only if there exist two closed subspaces X° C X and Y, C Y such that codim
X% =dim ¥y < 0and Gr(L) ® (X° x Y)) = X x Y.

Proof. Suppose that L is a Fredholm operator of index zero. Then Im(L) is a closed subspace
of Y and codim Im(L) = dim ker(L) < . There exists X° S X and Y, € Y such that
ker LOX°=X and Im(L)® Y, = Y. It is easy to prove that Gr(L) N(X° x Y,) =
{(0,0)}. Let (x,») e X X Y, then (x,¥y) = (xo + X', L(xg + x')) + (x° - x', %, where x =
Xo+x°eker LAOX®, y=3"+y,eImll)®Y, and x' € x* N Dom(L) is such that
L(x") = y°. Consequently Gr(L) ® (X° x Yp) = X x Y. Conversely, if L is a closed
operator such that Gr(l) @ (X® x Y) = X x Y, where dim Y, = codim X % < o, then
ker LN X° = {0} and ker L + X° = X, thus ker L @ X® = X. On the other hand it can be
verified that Im(L) @ Y, = Y and thus Im(L) is a closed subspace of finite codimension.
Consequently L is a Fredholm operator of index zero. W

Remark 2.1. Let L: Dom(L) C X — Y be a closed Fredholm operator of index zero. Then
pro: Gr(L) = Y is a bounded Fredholm operator of index zero. Since pr,: Gr(L) — Dom(L) is
one-to-one and onto, the subspace Dom(L) can be equipped with a new norm ||| ;, called the
graph norm, as follows

Ixllz = lprn~' el = llee, Lol = fixll + ILx].

The space Dom(Z) equipped with |- ]|, will be denoted by X, . It is clear that X, is a Banach
space and L: X; — Y is a continuous Fredholm operator of index zero.

We denote by Sub(X X Y) the set of all closed subspaces of X x Y. Sub(X x Y) can be
equipped with the following metric function:

dist(Vy, V2) = d(B(V)), B(V), Vi, V2 € Sub(X X Y)

where B(V,), B(V,) denote the closed unit balls in V; and ¥, respectively and d(-, *) is the
Hausdorff metric on bounded subsets of X x Y. Let O,(X X Y) € Sub(X X Y) denote the
subspace of all graphs of closed linear operators from X into Y.

Definition 2.1. Let P be a topological space. A family {L,}, . p of closed linear operators from
X into Y is called continuous family of operators parametrized by P if the mapping
p: P> O,(X X Y), p(4) = Gr(L,) is continuous.

Let Fo(X X Y) be the subset of O,(X X Y) of all graphs of closed Fredholm operators of
index zero. It follows from lemma 2.1 that F4(X X Y)is open in O,(X X Y). Let {L,}, c p be
a continuous family of Fredholm operators of index zero parametrized by P and let
@: P = Fy(X, Y) be defined by ¢(1) = Gr(L,). By definition, ¢ is continuous. We define

y:={d,x,)e PX X XY, () e o)
= {4, x,y) € PX X X Y; x € Dom(L)), y = L, (x)}
andput n:y - P, n(A, x,y) = A.
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LeEmMA 2.2. Under the above assumption, the map n: y — P is a locally trivial Banach vector
bundle. For every A € P, the fiber over A is given by Gr(L,) = ¢(4).

Proof. Let A, € P and let Gr(L) = ¢(A,) be the fiber over 4,. By lemma 2.1 there exist
subspaces X° € X and ¥, € Y such that codim X° = dim ¥, < © and GH(L) ® (X° x Y;) =
X X Y. By continuity of ¢: P — F,(X X Y), there is a neighborhood U of 1, such that
GriLy)y ® (X°x Yp) =X xY for all AeU, and thus P, := PIG,(LQ :Gr(L,) — Gr(L),
where P is the projection onto Gr(L) associated with the direct decomposition Gr(L) @
(X°x Y;) = X x Y, is an isomorphism. Therefore we have the following commutative
diagram:

U x Gr(L)_l/—> y|U

where w(4, (x, ¥)) = (4, P (x, ) for (4, (x, ¥)) € U x Gr(L). The map y defines the required
local trivilization of the bundle y over U. R

Let € := {(A,x) € P X X; x € Dom(L,)} and let p,: y = & be given by, p,(4,x,y) = (4, x)
for all (4, x, y) € y. By remark 2.1, for every A € P, pr;: Gr(L,) = X, =: X, is an isometry,
therefore the mapping p,: y — & gives us the identification of the bundle y with &. Under this
identification, n: & = P, n(A,x) = A, is a Banach vector bundle whose fiber over L € P is
exactly the space X, := X;,. On the other hand, by the same remark 2.1, the projection
pry: Gr(L,) — Y induces the vector bundle morphism p,:y = Y, p(4,x,y) =y for all
(A, x,y)€y. We put L := p,+(p,)"", i.e. we have the following commutative diagram of
vector bundle morphisms

P /y\Pz
e—L.y

where L(4, x) = L, (x) for all (A, x) € &. This implies that the restriction of L to the fibre X,
over A € P is exactly the bounded Fredholm operator of index zero L,: X, — Y. Assume that
P is a compact connected space. It is well known that if P is contractible or if £ is modelled on
Kuiper space X, (see [31] for examples and properties of Kuiper spaces), then there is a vector
bundle isomorphism W¥: P x X, — &, where X, is the typical fibre of & The composition
L =LY¥Y:P x X,— Y is exactly the continuous family of Fredholm operators of index zero
considered in the setting of the Fitzpatrick~-Pejsachowicz degree theory.

A continuous map F: § — Y can be considered as a parametrized continuous family (), ¢ p
of perturbations of L. The map F does not need to be defined on the whole space &. Let Q € X
be an open and bounded set and let F: P x  — Y be a mapping. The vector bundle morphism
j:1 & = P x X induced by the imbeddings j,: X, — X, i.e. j(4, x) = (4, /,(x)), is a continuous
map, thus y = j~}(P x ) is a closed set and we have the following diagram:

o5

PxQ
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If the mapping F is continuous, then F is also continuous. It is clear that for every A € P, F, is
compact if and only if £ is L,-compact. Therefore in the case where j,: X, = X is compact for
all A € P, the continuity of F implies also the compactness of F.

Definition 2.2. Let P be a compact space and let j: & = P X X be as above. A mapping
F:Px Q — Y is called L-compact if the composition F:= Foj:y = Y is a continuous
compact mapping. F is called an admissible perturbation of L if F is L-compact and
L, # F(4,x) for all x e Dom(L,) N 3Q and A € [0, 1], where L is defined by a continuous
family {L,}, < p Of closed Fredholm operators of index zero.

THEOREM 2.2. Let P = [0, 1], @ € X be an open bounded set, and let F: [0, 1] x @ — Y be an
admissible perturbation of L, where L is defined by a continuous family {L,}, ¢ o,,) of closed
Fredholm operators of index zero. Then the following homotopy invariance property for the
coincidence degree holds _ _

dl(Ly, Fy), Q] = xdl(L,, F), Q).

Remark 2.2. Using the fact that the vector bundle n: & — [0, 1] determined by the family
{L\Jx e 10,1718 trivial, one could expect that the above homotopy invariance is an immediate conse-
quence of theorem 2.1. However, there are some problems. Firstly, since the imbeddings
A X, = X, in general, are not isomorphisms but sometimes are compact linear operators, the set
x = j 1P x Q) can be unbounded and therefore, the usual definition of the degree can not be
applied. Secondly, by using a trivialization ¥: [0, 1] X X, 3 & of the bundle &, we obtain a
parametrized family of continuous Fredholm operators of index zero from X, to Y and a
parametrized family {F}}, (0.1 of compact perturbations. Because the trivialization ‘¥ does not
necessarily transform the set x into a product [0, 1] x @, a problem arises. However, this
problem can be overcome by using the excision property of the degree. Before presenting our
proof, we should mention that the possibly unbounded regions (as in the case of y) whose
intersections with finite dimensional spaces are bounded were studied by Ma in [25]. This
approach was applied in [5] for the construction of the coincidence degree theory on vector
bundles for weakly upper semicontinuous, weakly completely continuous multivalued perturba-
tions of a continuous family of Fredholm operators of index zero parametrized by P.

Proof of theorem 2.2. Put x =i }([0, 1] X Q), @ = j~}([0, 1] x dQ) and define the class
X, @)ofall compact maps T: x = Ysuchthat L(A, x) # T(A, x) forall (4, x) € @ and thereis
a continuous map T [0, 1] x Q — Y such that the following diagram

X — Y
J'l %
(0,1} x @

commutes. By ®; (x, @) we denote the subset of X, (x, @) consisting of all finite dimensional
maps T: x — Y, i.e. such that there is a continuous compact map 7: [0, 1] X @ — Y such that
7([0, 1] x Q) is contained in a finite dimensional subspace of Y and the diagram

X —_— Y
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commutes. The classes X;(x, @) and ®;(x, @) can be equipped with Q@-noncoincidental
homotopy relation (see [S]). The corresponding sets of equivalence classes are denoted by
X, [x, @) and @, [x, @], respectively. It can be verified in standard way (compare [5, lemma
3.10)) that the inclusion i: ®; (x, @) = X, (x, @) induces a bijection

iv: @ [x, @1 S K. [x, Q).
For Q € X a bounded open subset, put x, = ;7 ({4} x Q) and @, := j'({A} x Q). An
admissible perturbation F determines an element F = Foj:x = Y of X, (x, ®). Since i, is a

bijection, F is @-noncoincidentally homotopic to a finite dimensional map F°® € ®; (x, @). This
yields the commutative diagram:

Ly

Jj \ / F
(Q, 9Q)
Let K, € CR(L,) be such that dim K, < e. Then the equation
Ly = F(x), xexn
is equivalent to the following fixed point problem
x=(L, + K NTIF + K)h®), xex.

Let Y, C Y be a finite dimensional subspace such that £)(x) C Y, and Im K, C Y,. Put
X, = (L, + K, »j,)"(Y,). The coincidence degree of L, with £ on Q can be defined by

di(Ly, £, QI = dlLy, B), Q] := degy s (Ly + R = /)7 'B) + K)lxs, x N Xy, 00 (2.3)

where y N X, is now a bounded set. In this definition the sign of d[-, -] depends on the choice
of the resolvent K, . By the construction and the excision properties of the coincidence degree
of Mawhin, the above constructed coincidence degree coincides with the coincidence degree of
Mawhin. Let us remark that"the resolvent K, is also a resolvent for L5, where 4 belongs to
some open subinterval U containing A. By using a trivilization over U and the finite dimensional
reduction &,|y:= ((4,x) € §|y; x e (Lx + K5)7'(Y,)} we reduce the problem to a finite
dimensional subbundle &,|, of the bundle &|,. Since Q N (L5 + K5)~'(Y,) is an open
bounded subset, it follows from theorem 2.1 that |d[(Ls, Fx, ), Q]| is a constant function on
U. Consequently, by the compactness of [0, 1], the statement of theorem 2.2 follows. W

Remark 2.3. We remark that, by using the language of bundles, we can extend the notion of an
admissible perturbation of L to more general classes of mappings. For example, we can study
L-condensing perturbations, or multivalued perturbations satisfying additional conditions
(cf. [5]). The coincidence degree theory of Mawhin for those classes of perturbations were
studied in [20, 21]. Using the standard approach, it can be proved that in all mentioned cases
the homotopy invariance property, admitting continuous deformations of the linear part, is still
valid.

3. AREDUCTION THEOREM FOR PERIODIC BOUNDARY VALUE PROBLEMS OF
NEUTRAL EQUATIONS

Let C(Ja, b], R™) be the space of continuous functions from [a, b] to R" with the topology of

uniform convergence. For a fixed r = 0, let C = C([-r, 0], R") with norm |j¢] = sup |@(6)|
~r<8=<0

forpe C.If xe C(lc — r,o + J], R") for some > 0, then x, € C, f € [0, g + d], is defined
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by x,(0) = x(t + ) for 8 € [—r,0). Suppose w > 0 is fixed, A: R x C — R" is continuous,
At + w,9) = A(t,9), A(t,p) is linear in ¢ and there exists a continuous function
v: [0, ©) = R, v(0) = 0, such that |A(¢, ¢%)| < v(s)|l¢*|| for 0 < s < r, t € R and for all func-
tions ¢° e C such that ¢°(#) =0 for #e[—r, —s]. Let D:R x C— R" be defined by
D(t)p = ¢(0) — A(t, ¢). The operator D is said to be stable if the zero solution of the functional
equation D(t)y, = 0 is uniformly asymptotically stable, that is, there are constants K, a > 0
such that if y(¢) is the solution of D(¢)y, = 0 with y, = ¢, then

[yl = Ke™*'|lpl fort=0 and ¢eC.

Let P, =the CR,R"; h(t + w) = h(t) for te R} and H, = {He C(R,R"); H() =0,
H(t) = ot + h(t) for some o € R"and h € P,}. Forany h € P,, let {h| = sup |h(¢)|, and for

O0st<w
any He H,,, H(t) = af + h(t), « € R", he P,, let |H| = |a| + |h|. Then P, and H, are
Banach spaces.
We consider the neutral functional differential equation

d
d_tD(t)x' = f(t, x,) (3.D

where D is defined above and f: R X C — R" is completely continuous and w-periodic in the
first argument. Let L: P, — H, be the continuous linear mapping defined by

Lx(t) = D(t)x, — D(0)x,, teR
and G: P, — H,, be defined by

Gx(t) = S JGs, x,) ds, t € R.
0

Then finding w-periodic solutions of equation (3.1) is equivalent to solving the operator
equation
Lx = Gx in P,.

The Fredholm alternative theory (cf. [13]) of the equation D(¢)x, = H(t) for H € H,, implies
that L is a continuous Fredholm operator of index zero, and an immediate application of the
Arzela-Ascoli theorem shows that G is completely continuous (cf. [15]). Therefore, the
coincidence degree d[(L, G), Q] is well defined for any open bounded set Q < P, such that
0¢ (L — G)(%). The following result, due to Hale and Mawhin [15], is an immediate conse-
quence of the existence property of coincidence degree.

THEOREM 3.1. If there exists a bounded open set Q < P, whose boundary dQ contains no w-
periodic solution of the equation (3.1) and if the coincidence degree d[(L, G), Q] # 0, then
equation (3.1) has at least one w-periodic solution.

Application of this general result requires solving two difficult problems—finding @ priori

bounds and estimating d[(L, G), Q]. The major purpose of this section is to reduce the estima-
tion of d[(L, G), Q] to the existence problem of periodic solutions to the retarded equation

d
a;x(t) = flt, x) (3.2)
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by applying the homotopy invariance property in the previous section to the following family
of equations

d
a[X(t) — AW x)] = flt,x), A el0,1]. (3-3n
More generally, we consider the following family of neutral equations
d
T [x(t) — J(A, )x] = g(t, x,, ), A €el0,1] (3.4),

where we assume that
(H1) J:[0, 1] x R — £(C, R™) is continuous;
(H2) g: R x C x [0, 1] = R" is completely continuous;
(H3) J(A,t + wyp = JA, o, g(t, 0, A) = gt + w,p,A) for (1,1, ¢) € R X [0,1] X C;
(H4) for any fixed A € [0, 1], the operator D,: R x C — R" defined by D, (¢, ) = ¢(0) —
J(A, t)o is stable, and there exists a continuous function v, : [0, ©) = K, v, (0) = 0 such that
|J(A, )o*| = v (s)ll¢°]l for 0 <=s=<r, teR and ¢° € C such that ¢*(6) = 0on [—r, —s];
(HS) J(, t)e = A(t, ¢) and g(t, ¢, 1) = f(z, @) for (t, p) € R X C.
As a consequence of theorem 2.2 and 3.1, we have the following.

THEOREM 3.2. Assume (H1)-(HS) hold and there exists an open bounded set Q < P, whose
boundary dQ contains no w-periodic solution of the equation (3.4), for A € [0, 1] and that
dl(Ly, Gp), ] = 0, where L, and G,: P, — H, are defined by Lyx(¢) = x(t) — A0, t)x, —
[x(0) — A(0, O)x,] and Gox(t) = [og(s, X;, O) ds. Then there exists at least one w-periodic solu-
tion to the equation (3.1).

Proof. Consider the maps F: [0,1] x P, = H, and L: [0, 1] x P, - H,, defined by

4

F,00) = g g(s, x,, A) ds, xeP,, t€R, Ael0,1]

and 0

LA, x)(t) = x(t) — J@A, t)x, — [x(0) — J(A, O)x,], xekp,, teR, Ael0,1].

By (H1) and (H4), {L,\})\elo jj is a continuous Fredholm operator of index zero. Assumption
(H2) guarantees that £: [0, 1] x P, — H,, is completely continuous, and thus Fll0 nxa-:[0,1} x
Q) — H, is a compact map. Since there is no w-periodic solution to (3.4), for A € [0, 1] on
3aQ, L(A, x) = F(A, x) for (1, x) € [0, 1] X 3Q. Therefore F is an admissible perturbation of
{Lylxe 0,11~ By theorem 2.2 (or even corollary 2.1),

ldI(Lo, Fo), Q1| = |dU(L,, F), Qll,

that is, |d[(L, G), Q]| = |dI(L,, G,), Q]|. Therefore by the existence theorem of coincidence
degree, if deg[(L,, G,), Q] # 0, then there exists at least one w-periodic solution to the equation
(3.1). This completes the proof. B

Let J(4, e = AA(t, ¢) and g(¢, ¢, A) = f(I, ¢) in equation (3.4), we get the following result
by which we can reduce the problem of the solvability of periodic boundary value problems for
neutral equations to a corresponding problem for retarded equations.
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CoROLLARY 3.1. Assume that

(He6) for any A € [0, 1], the operator D, : R x C — R" defined by D, (1, ) = ¢(0) — LA(1, 0)
is stable,
and that there exists an open boundary set Q € P, whose boundary 32 contains no w-periodic
solution of the equation (3.3), for A€ [0,1] and d[(L,, Gy), 2] # 0, where L, and
G,: P, = H,, are defined by Lox(t) = x(t) — x(0) and Gox(¢) = {4.f(s, x,) ds. Then there exists
at least one w-periodic solution to the neutral equation (3.1).

Remark 3.1. (H6) is a physically meaningful assumption. To illustrate this point, we consider
the following D-operator defined by

i=1

m 0
D(t,9) = 9(0) — ¥ Bit)p(~r) - j &(t, B)p(6) d6

whereteR,9e C,r;>0,Bi:R-R"™",i=1,...,m,and g:R x [-r,0] = R"*" are con-
tinuous and w-periodic in the first argument. It can be shown that the D-operator is stable if

) |B:(1)| + S

i=1

0
lg(z, 81 d6 < 1, teRrR (3.5)
(cf. [2, 23, 24, 30]). Although it is possible to obtain some more general sufficient conditions
guaranteeing the stability of the D-operator, Melvin [30] proved that (3.5) is the most physically
meaningful condition for the stability of D-operator in the sense that D-operator preserves
the stability. under small perturbation of r;. It is easy to verify that if (3.5) holds, then
Dy: R x C — R"defined by D, (¢, ¢) = ¢(0) — ALT., B;(D)o(—r) — A, g(z, O)p(H) d@is stable
for A € [0, 1].

Remark 3.2. Reducing the solvability problem of the periodic boundary value problem for the
neutral equation (2.1) to the problem of estimating the degree di(L,, Gp), Q] is significant
because there have been various results developed for the estimation of the coincidence degree
dl(Ly, Gy), 2] associated with the existence of periodic solutions to the retarded equation (3.2).
To illustrate this significance, we present the following result.

CoroLLARY 3.2. Assume (H6) holds, and there exist a constant p > 0 and a completely con-
tinuous map g: R X C x [0, 1] = R" which is w-periodic in the first argument, g, ¢, 1) =
S, @) for (t, 9) € R x C and such that
(i) dB(p) contains no w-periodic solution of the equation (3.3),, where B(p) =

fxeP,; x| < pk

(i) 3B(p) contains no w-periodic solution of the equation x = Ag(¢, x,, A) for A € [0, 1];

(iii) 0Bg~(p) contains no zero of the mapping go:R" — R" defined by gya):=
1/wig g(¢, @, 0) dt, where Bg(p) denotes the open ball centred at 0 of R" and of radius p, 4
denotes a constant mapping in C with the value @ € R";

(iv) the Brouwer degree d(g,(@), Br(p), 0) = 0.
Then there exists at least one w-periodic solution to the neutral equation (3.1).

Proof. According to the proof of [26, theorem 4], d([L,, G,l, B(p)) = d(gs(@), Br~(p), 0) if
the assumption (ii) and (iii) hold. Therefore by corollary 3.1, if (i) and (iv) hold then there exists
at least one w-periodic solution to the equation (3.1).
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Remark 3.3. In [15], Hale and Mawhin proved a similar result replacing g,(@) by
1/wlg g(¢, (Ma),, 0) dt, where Ma is the unique solution of the functional equation D(¢)x, = a.
The advantage of our result is obvious since it is usually difficuit, if not impossible, to find an
explicit expression for Ma.

Remark 3.4. The proof of corollary 3.2 indicates that once an existence result is proved for a
retarded equation by using the coincidence degree theoretical method, and a priori bounds are
established for neutral equations, this existence result holds automatically for neutral equa-
tions. More results can be obtained in this way. We list in the following some of these results
for the convenience of application.

CoroLLARY 3.3. Assume that (H6) holds and there exists an open bounded set Q < P, sym-
metric with respect to the origin, containing it and such that dQ contains no w-periodic solution
of each equation

d
DOx =gt x, 1),  Ael01],

where g: R x C x [0,1] = R" is completely continuous, w-periodic in the first argument,
g, 0,0 = —g(t, —9,0) and g(t, ¢, 1) = f(¢, ¢) for (¢, ) € R x C. Then equation (3.1) has at
least one w-periodic solution in Q.

This is an immediate consequence of corollary 3.2 and [26, theorem 3]. We should mention
that this result was established in [15] by using an extension of the Borsuk theorem given in [27,
theorem 7.2].

CoroLLARY 3.4. Assume (H6) holds, and there exists an open bounded set G € R" such that
(i) G contains no w-periodic solution of the equation (3.1), for A e [0, 1], where
G={xeP,; x(t)e GforteR};
(ii) for each u € 3G there exists a V, € C(R", R) such that V,(u) =0, G < {veR"
V,(v) < 0} and for any x € P, with x([0, w]) € G, at any ¢t € R with x(t) = u, one has
(grad V,, f(t, x)) # 0.

Then there exists at least one w-periodic solution to the neutral equation (3.1) if the Brouwer
degree d(f, G, 0) # 0, where f(u) = 1/wly f(s, &) ds and # is a constant function on R" with
‘value u € R".

This is a consequence of corollary 3.1 and a corresponding existence result for retarded equa-
tion (cf. [29, theorem V I1.9]). We note that the existence of such a set G can be guaranteed by
a guiding function. For details, we refer to [29] and the next section.

Finally, we point out that the solvability of periodic boundary value problems of neutral
equations can also be reduced to the corresponding problem of an ordinary differential equa-
tion in some cases by using corollary 3.1 or theorem 3.2. For example, let J(4, t)p = AA(L, @)
and g(z, ¢, 1) = (1 — DA, 9(0)) + Af(¢, @) in theorem 3.2, and we get the following.

CoroLLARY 3.5. Assume (H6) holds, and there exists an open bounded set Q < P, whose
boundary 3Q2 contains no w-periodic solution to the equation

< () ~ 246, 1)) = (= DA XO) + Mx), A€o, 1],
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where h:R X R" - R" is continuous, and w-periodic in the first argument. If
dl(Lo, Gol, Q] # 0, where Lox(t) = x(t) — x(0) and Gyx(t) = {5 h(s, x(s)) ds Then there exists
at least one w-periodic solution to the neutral equation (3.1).

Note that Lyx = G,x, in the above result, is equivalent to the ordinary differential equation
X = h(t, x). Therefore there are lots of results about the estimation of d[(L,, G,), Q). For
details, we refer to [10, 29, 41].

4. METHOD OF GUIDING FUNCTIONS AND LIAPUNOV-RAZUMIKHIN TECHNIQUE FOR
A PRIORI BOUNDS

In this section, we develop a generalization of the basic theorem of the method of guiding
functions and the Liapunov-Razumikhin technique to provide a priori bounds for the periodic
boundary value problem of neutral equations.

The following definition is a generalization to neutral equations of the guiding function
introduced and developed by Krasnosel’skii and others (see [9, 18, 19} and references therein)
for ordinary differential equations, by Mawhin, Hetzer, Gustafson, Schmitt and others (see [9,
10, 11, 16, 17, 29] and references therein) for retarded equations.

Definition 4.1. A continuously differentiable function V: R" — [0, ) is said to be a guiding
Sunction for the periodic boundary value problem of equation (3.1), if there exists a constant
p > 0 such that

(grad V(D\(t, x))), f(t, x)> < 0

where x € P,,, 1 € [0, 1], and ¢ € R is such that |D, (¢, x,)| = p and V(D, (s, x,)) < V(D\(t, x,))
for all s € R, where D, (¢, ¢) = ¢(0) — 1A(¢, @).

According to the definition, we have the following simple criterion for a function to be a
guiding function.

LeEmMa 4.1. A continuous differentiable function V: R" — [0, =) is a guiding function for the
periodic boundary value problem of neutral equation (3.1) if there exists a constant p > 0 and
a continuous function P: [0, ) — [0, =) such that:

(i) for any given A >0, A € [0, 1] and any x € P,, if V(D,(t,x,)) < h for t € R, then
Ix(¢)] = P(h) for t € R;

(i) (grad V(D, (¢, x,), f(t,x,)) <O for every x € P, and t € R with |D,(¢,x,)| = p and
lxll = POADL(t, x))).

Example 4.1. Consider the following neutral equation

d r
T [X(t) - j dn(f)x(r - 9)] = f(t, x;) 4.1
0

where 7 is an n X n matrix function whose entries are of bounded variation on [0, r] and
Varg 4 < 1. We claim that the function V: R" — [0, «) defined by V(x) = (x, x) is a guiding
function for the periodic boundary value problem of neutral equation (3.1) if there exists a con-
stant p > 0 such that (D, (x,), f(£, x,)) < 0 for every x € P, and ¢ € R with |D,(x,)] = p and
x|l = ID\(x)l/(1 — Vary 17), where D, (¢) = ¢(0) — Afo dn(@)e(— 6).
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Proof. Denote by BC the space of bounded continuous functions on R with the norm

l¢llsc = sup |e(s)|, and by E the set of the n X n matrix measure ¢ satisfying
seR

Il = j dlEle) < .

- 00

For ¢ € E, we define the operator £ * : BC — BC by

+ oo
Exp(t) = X [dE©)]e@ — ) for t € R.
Let 0 denote the measure
0 ifr=<0
o) = {Id ift>0

and extend # to an n X n matrix measure on (— o, + o) by defining 7(¢) = 0 for f < 0 and
nity = n(r) for t = r, then

Dyo = u, * ¢(0)
with

Uy =96 — An.

In [37], Staffans proved that u, * continuously maps BC into itself, it is invertible and its
inverse operator uy ' * d is also continuous. Moreover, ux ' * 4, = uy *ux' = dand u,, uy' € E.
Using these notations, the equation D, (x,) = g(t) for g € BC can be solved and x(¢r) =
(! * g)(¢). Noting that (6 — An)™! can be expressed by the series d + An + A2y *n +
A*nxn*n + --- which is uniformly convergent for A € [0, 1], we see that if g € P,,, then

Ix() = (@ + Allnlly + 22lnol* + "'),2"[3’31 lg@)!

maxle[O,w]‘g(t)l
1 - |inllo

< maxze[o,w]Ig(t)l

- 1 - Var[(),r]ﬂ

which implies that if <D, (x,), D\(x,)) < h for t € R, then |x(¢)| = Vh/(1 — Vary 4#). There-
fore our conclusion follows trivially from lemma 4.1.

Example 4.2. Consider the following neutral equation
d
P [x(t) — B(t)x(t — ] = flt, x,) 4.2)

where B: R — R"*" is a w-periodic and continuous map and |B(¢)| < k < 1 for # € R and for
a constant k. We claim that the function V: R"” — [0, «) defined by V(x) = {x, x) is a guiding
function for the periodic boundary value problem of equation (4.2) if there exists a constant
p > 0 such that

{x(t) — AB(t)x(t — ), f(t, x)> <0

for every x € P,,, A € [0, 1], f € R with |x(t) — AB(t)x(t — r)| = p and

"xt" < I.X'(t) - iB_(tix(I - r)l .
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Proof. It is easy to verify that for any g € BC the functional equation x(¢t) — AB()x(t — r) =
g(¢) has a solution .
x(t) = ¥ A" [I Bu - jng@ - in) + g@).
i=1 j=0
Therefore if |g(t)] < h for t € R, then |x(?)| = [E7; A%k’ + 1] < h/(1 — k). Our conclusion
then follows from lemma 4.1.

The method of guiding functions and Liapunov-Razumikhin technique have been used for
the study of stability of both retarded equations and neutral equations (cf. [12, 14, 23, 24, 35,
36, 40]) and for the study of a priori bounds of retarded equations (cf. [10, 11, 16, 17, 22, 29]).
The following result is a generalization of these results to @ priori bound estimate of periodic
solutions of neutral equations.

LeMuMa 4.2. If there exists a guiding function V: R" — [0, ) for the periodic boundary value
problem of equation (3.1) such that

lim sup inf W(D,\(f, X)) = o forxeP,, 4.3)
x| >0 reRXe[0,1]
then there exists a constant p* > 0 such that any w-periodic solution to the equation (3.3),,
A € [0, 1], satisfies |x(¢)] < p* for € R.

Proof. Let x(t) be a w-periodic solution to equation (3.3), for some 4 € [0, 1]. Then
V(D, (¢, x,)) is also a w-periodic function, and thus there exists 7 > 0 such that V(D (7, x,)) =
max, ¢ o,w V(DA (¢, X)) and {grad W(D\(z, x,)), f(z, x,)> = 0. Therefore by the definition of a
guiding function, |D,(z, x,)] < p. This implies that V(D\ (¢, x,)) =< Inllgx W(z) from which we

zlsp

obtain |x(¢)| < p*, where p* > 0is a given constant such that for any x € P, and 4 € [0, 1}, if
Ix} = p*, then V(D,(t, x)) > Irr’lax V(z) for some 7 € {0, w].
zZlsp

We are now in the position to state our major result in this section.

THEOREM 4.1. Assume (H6) holds and suppose that there exists a guiding function

V:R" — [0, «) for the periodic boundary value problem of equation (3.1) such that (4.3) holds.

If the Brouwer degree d(grad V, G, 0) # 0, where G = {u € R"; |V(u)| < v} and v is a constant

such that v > Irr'lax | V(w)|, then there exists at least one w-periodic solution of the
ulsp*

equation (3.1).

Proof. Let A = 0 in the definition of a guiding function, we get {(grad V(x(t)), f(t, x,)) < 0
for every x € P, t € R with |x(¢)| = p and V(x(s)) = V(x(¢)) for s € R. It is easy, from the
definition of a guiding function, to verify that G = {v € R"; | V(v)| < v} satisfies (ii) in corollary
3.4, and {grad V(u), flu)) < 0 for every u € R" with |u| = p. Therefore by the generalized
Poincaré-Bohl theorem (see [29, proposition 11.9}), d{grad V, G, 0) = d(f, G, 0) # 0. More-
over by lemma 4.2, for any possible w-periodic solution x(¢) to the equation (3.3),, A € [0, 1],
|x(?)| < p* and thus |V(x(¢))} < v which implies that x ¢ 3G, where G := {xe P,; x(t) e G
for t € R}. Therefore by corollary 3.4, there exists at least one w-periodic solution to the
equation (3.1). W&
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For illustrative purposes, we consider the following equation

r
d%[X(t) - L dn(O)x(t - 0)] = Ax(t) + f(t, x) 4.9)
where
(i) n is an n x n matrix function whose entries are of bounded variation on [0, r] and
Var 41 < %
(ii) there exists a constant p, > 0 such that

t,
1—2[ |A|Var, ,n +  sup |7, o)

[1 — Varg 477! > 0;
loolzp ol ] 0

dii) AT+ A =-Id
CoOROLLARY 4.1. Equation (4.4) has at least one w-periodic solution.

Proof. By remark 3.1, (H6) holds with D, (¢) = ¢(0) — Afg dn(6)e(— ). Let V(x) = {x, x). It
is easy to prove that for any x € P, and A € [0, 1}, if |x(t*)| = max |x(?)| for some t* € R, then
te

ID\Ce)l = [x(2%) — A S dn(@)x(z* - 0)‘ = [1 = Varp 47]|x(t*)|.
0

This implies that
lim inf sup |D\(x)| = o,
Jx) >0 X €{0,1] t € {0,w]

and therefore, V satisfies (4.3).
Let p = [1 — Varp  n-(1 - Var[o,,]n)“]“p,. Suppose x € P, and t € R are such that
|Dy (x,)| = p and | D, (x,)| = |Dy(x)| for s € R. Then putting H(t) = Dy(x,), we get

x(t) = [6 — An)™ » H(t) = H(t) + An = H@) + Kn s HE) + -+
from which we have
x| = [H(@)| - sfenlgxl |H(s)| Var 4 n(1 - Vary )"
= [1 = Varp yn(1 — Vaf[o,r]ﬂ)-ll'H(t)I = py

and
Ix()| = |H@)| + srenlgxl |H(s)|Vary ,n(1 — Varg  m)~"

< (1 — Vary 4m "H®)| = (1 — Vary 1m) 7' [Dy(x)].
Therefore

(grad V(D) (x), f(t, x)) + Ax(1))

—{Dy(x), D\ (xp)> + 2Dy (x7), f1t, X)) + AUD\(x), LA E dn(6)x(t — 6))
0

L, x
< — D) + z[ |4|Varg,n + l-ffr)T)l] Il 1Dy 06|
4
«, _
= - |Dx(xt)|2 + 2|: |A|Var[o,,]r7 + sup L/ (p)l][l — Var 411 1|D)‘(x')|z <0,
bolze, 0l
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Hence, Vis a guiding function for the periodic boundary value problem of equation (4.4). Since
the Brouwer degree

d(grad V, Bgn(v),0) = (- 1)" # 0

for any v > 0, by theorem 4.1, there exists at least one w-periodic solution.
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