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1. INTRODUCTION 

IN A SERIES of his papers (cf. [9-10,26-29]), Mawhin developed a coincidence degree theory for 
perturbations of a linear Fredholm operator of index zero. This coincidence degree theory 
turned out to be a very powerful and useful tool in the study of the existence of solutions for 
nonlinear boundary value problems. 

In [15], Hale and Mawhin applied the coincidence degree to the periodic boundary value 
problem of some neutral functional differential equations. Their method uses a continuation 
principle based on the homotopy invariance of the coincidence degree. Let us recall this 
property. Let X and Y be two real Banach spaces and let L: Dam(L) c X + Y be a linear 
(possibly unbounded) Fredholm operator of index zero. Suppose that Q G X is an open 
bounded subset and H: Q x [0, l] + Y is a homotopy of L-compact mappings (see [27,29] for 
precise definitions) such that L(x) # H(x, A) for all x E aS2 n Dam(L) and A E [0, 11. Then the 
coincidence degree d[(L, I-i(*) A)), Cl] is a constant function with respect to I E [0, 11. 

In this paper we study the periodic boundary value problem of a neutral functional 
differential equation of the following type 

i 

$ b(f) - c(t)x(t - r)l = .et, XJ 

x(0) = x(w) 

(1.1) 

where C: R + R is a continuous w-periodic function and f: R x C([ - r, 01, R) + R is a 
completely continuous mapping w-periodic with respect to the first variable. 

In our approach we reduce the problem (1.1) to the, relatively simpler, periodic boundary 
value problem for the following retarded equation of the type 

i 

$ x(t) = SO, 4) 
(1.2) 

x(0) = x(w). 

* Supported by NSERC-Canada. 
t Supported by Gordin-Kaplan Memorial Postdoctoral Fellowship. 
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The simplest way for such a reduction is through the following natural deformation 

i 

$ b(t) - W)x(t - r)l = _f(f, x,), A E LO, 11 
(1.1)x 

(x(0) = x(w). 

However, since the deformation (l.l)x involves considerable modifications of the linear part, 
representing the Fredholm operator L, the homotopy invariance property of the coincidence 
degree, in the above formulation, is not sufficient for our purposes. In order to use such 
deformations we need more general homotopy invariance, allowing “continuous” deforma- 
tions of the Fredholm operator L as well as deformations of the perturbing map. 

On the other hand, in [7, 81 Fitzpatrick and Pejsachowicz developed a degree theory for 
continuous semilinear Fredholm maps of index zero. The advantage of their approach lies in 
the fact that their generalizations of the Leray-Schauder degree does not. depend on the 
representation of a semilinear Fredholm map f(x) in the form f(x) = Lx - F(x), where L is a 
continuous Fredholm operator and F is compact. Another important advantage of this degree 
theory consists in the homotopy invariance property which permits also for continuous 
deformations of the linear part. Since the coincidence degree of Mawhin is defined for a more 
general (unbounded) Fredholm operator of index zero it is an interesting question if it is 
possible to obtain a similar homotopy invariance for the coincidence degree in this case. 

In the first part of this paper, we apply the Fitzpatrick-Pejsachowicz degree theory in order 
to obtain a variant of the homotopy invariance property, allowing deformations of the linear 
part, for the coincidence degree of Mawhin. In the second part, we apply this homotopy 
invariance property to provide a natural and unified way of extending the existence results 
established for the periodic boundary value problems of certain retarded equations to neutral 
equations. 

This paper is organized as follows. In Section 2, we present a brief description of the 
Fitzpatrick-Pejsachowicz degree theory for semilinear continuous Fredholm maps of index 
zero and next we indicate how its homotopy invariance implies the forementioned homotopy 
invariance of the coincidence degree of Mawhin. A continuous deformation of a closed 
unbounded Fredholm operators of index zero is a continuous deformations of their graphs with 
respect to an appropriate topology. Presentation of a parametrized family of unbounded 
Fredholm operators as a morphism from certain vector bundle modelled on a Banach space into 
a Banach space permits us to simplify the presentation and, with the use of some homotopy 
arguments, to describe the direct link of coincidence degree with the setting of 
Fitzpatrick-Pejsachowicz. The proof of this extension is surprisingly simple but nevertheless, as 
it is presented in the Section 3, this result can produce some interesting application. Namely, the 
existence of a priori bounds for the deformation (l.l), implies, by the homotopy invariance, 
that the coincidence degree for the both ends of this deformation are, up to sign, the same. 
Consequently, the existence results for the neutral equation (1.1) follow from their counterparts 
for the retarded equation (1.2). In the Section 4, we develop the method of guiding 
functions and the Liapunov-Razumikhin technique which are consequently applied to establish 
the existence of a priori bounds. The obtained results extend those due to Krasnosel’skii [18, 
191, Gaines and Mawhin [9] for ordinary differential equations, and to Gustafson and Schmitt 
[ll], Hetzer [ 16, 171 and Mawhin [26, 291 for retarded equations to neutral equations. 

Some examples are given to illustrate possible applications of our results. 
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2. FITZPATRICK-PEJSACHOWICZ DEGREE THEORY AND HOMOTOPY INVARIANCE OF 

COINCIDENCE DEGREE 

We start with a brief description of the Fitzpatrick-Pejsachowicz degree theory (cf. [7, 8, 

321). 
A continuous map f: X + Y, from a Banach space X into a Banach space Y, is called a 

semilinear Fredholm map of index zero if f can be represented in the form f(x) = L(x) - F(x), 
x E X, where L is a bounded linear Fredholm operator of index zero and F is a completely 
continuous map. For given Banach spaces X and Y, let &2(X, Y) denote the Banach space of 
bounded linear operators from X into Y, JC(X, Y) and GL(X, Y) denote the subsets of 
2(X, Y) consisting of all compact operators and all isomorphisms, respectively. CL,(X) will 
denote the group of all isomorphisms of the form Id - K with K E X(X, X). An orientation is 
a function E: GL(X, Y) + [ - 1, 1) satisfying the following properties: 

(i) If M,, it-f2 E GL(X, Y) with M, - Mz E X(X, Y), then .s(Mi) = E(&) if and only if 
h4,-‘M, E CL:(X), where CL: = (a E GL,X); deg,.,.(@, B, 0) = 1) and deg,.,,(Q, B, 0) is the 
Leray-Schauder degree of Cp with respect to a ball B, centred at the origin and of positive 
radius; 

(ii) If X = Y, then &(Zd) = 1. 
Such an orientation can be constructed in the following way: the group CL,(X) acts on 
GL(X, Y) by multiplication on the right. By choosing a representation M, in each orbit 01 we 
obtain the orientation function E: GL(X, Y) + ( - 1, 1) = Z, by 

c(M) = deg,.,.(K’M B, 0) ifMEa, 

where the right side is the Leray-Schauder degree of M;‘M E CL,(X) with respect to any ball 
of positive radius. 

It is well known that for a bounded Fredholm operator of index zero L: X + Y there exists 
a K E X(X, Y) such that L + K E GL(X, Y). Therefore, a semilinear Fredholm map of 
index zero having the representation f(x) = L(x) - F(x) can also be represented by 
f(x) = (L + K)(x) - (F + K)(x), and the problem of solving the equation f(x) = 0 is equiva- 
lent to finding a zero of the compact vector field Id - (L + K)-‘(F + K). 

Now we are able to present the definition of the Fitzpatrick-Pejsachowicz degree. Suppose 
that f:X -+ Y is a semilinear Fredholm map of index zero having the representation 
f(x) = L(x) - F(x), Q E X is an open bounded subset and L(x) # F(x) for all x E a&2. Let E be 
an orientation function on GL(X, Y) and let K E X(X, Y) be such that L + K E GL(X, Y). 
Then the Fitzpatrick-Pejsachowicz degree off on C2 is defined by 

deg,.,,(f, QO) := E(L + K) deg,,,,(Zd - (L + K)-‘(F + K), Cl, 0). (2.1) 

It was shown in [7, 81 that deg,,,,(f, Q, 0) is a well-defined function off and that the additivity, 
excision and normalization axioms of degree theory are satisfied. 

In order to present the homotopy invariance property, the following concept of semilinear 
Fredholm homotopy is introduced. A semilinear Fredholm homotopy is a map 
H: [O, 1) x X + Y having a representation H(A, x) = L(A, x) - F(A, x), 1 E [0, 11, where the 
map A + L(A, *) is continuous from [0, 11 to 2(X, Y), L(A, *) is a bounded Fredholm operator 
of index zero for all A E [0, 11, and F: [0, l] x X + Y is completely continuous. When $2 E X 
is an open bounded subset, His said to be admissible with respect to CJ if L(A, x) # F(A, x) for 
all (A, x) E [O, 11 x Xl. The homotopy invariance property of the Fitzpatrick-Pejsachowicz 
degree is the following. 
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THEOREM 2.1. Suppose that Q c X is an open bounded set and that H: [0, l] x X + Y is a 
semiline?; homotopy which is admissible with respect to Q. Then 

degr.,.(H,, Q, 0) = e(& + &)e(L, + Ki) degr.e.(&, Q 0) 

where HA := H(A, *) has the semilinear representation HA = Lx - Fx with Lx being a 
bounded Fredholm operator of index zero for all L E [0, 11, Fx being completely 
continuous, K, E X(X, Y) and Lx + Kx E GL(X, Y) for all A E [0, 11. The number 
6(H) = e(LO + K&(L, + K,) E Z, depends only on the homotopy Hand on E and is indepen- 
dent of the semilinear representation HA = L, - Fk. 

Let us present now the coincidence degree of Mawhin. Let L: Dam(L) C X --) Y be a 
Fredholm operator (possibly unbounded) of index zero. A resofvent of L is an K E X(X, Y) 
such that L + K is a one-to-one mapping onto Y. The set of all resolvents of L is denoted by 
CR(L). Let us fix a resolvent K E CR(L) and let 0 G X be an open bounded subset. A map 
F: fl + Y is called L-compact if (L + K)-‘F : 0 + X is compact. Let F: 62 + Y be an L- 
compact map such that L(x) # F(x) for all x E Dam(L) n a0, then the coincidence degree of L 
with F on Q is defined by 

d[(L, F), Ql := degL.s.Ud 
If L is a bounded Fredholm operator of 

compact maps and it follows from (2.1) that 

dt(L, 0, Ql = 
wheref(x) = L(x) - F(x), x E s1. By theorem 

- (L + K)-‘(F + K), Sz, 0). 

index zero, then L-compact maps are exactly 

f degr.e.(f, 0, 0) (2.2) 

2.1 and (2.2), we have the following homotopy 
invariance property for the coincidence degree. 

COROLLARY 2.1. Suppose that LA, A E [0, 11, is a continuous family of bounded Fredholm 
operators of index zero. Let Q E X be an open bounded set and let H: [0, l] x s1 --) Y be a 
compact map such that L,(x) # H(A, x) for all (A, x) E [0, l] x aa. Then 

4(L, 3 Ho), al = f 4th 9 HA Ql 
where HA := H@, -) for L E [0, 11. 

The advantage of the Fitzpatrick-Pejsachowicz degree lies in the fact that it does not depend 
on the representation of the mapf(x) = L(x) - F(x). However, in spite of the fact that in the 
case of semilinear Fredholm maps, the coincidence degree is expressed by the same number (up 
to the sign) as the Fitzpatrick-Pejsachowicz degree, it encompasses the more general situation 
of unbounded Fredholm operators. The aim of this section is to present the homotopy 
invariance property (admitting deformations of the operator L) for the coincidence degree of 
Mawhin in this general case. 

Let L: Dam(L) C X + Y be a closed Fredholm operator of index zero. We denote by 
Gr(L) = ((x, y) E X x Y; x E Dam(L), L(x) = y) the graph of L. By assumption, Gr(L) is a 
closed subspace of X x Y and we have the following commutative diagram: 

Gr(L) 

X > Do;(L) Ll -Y 
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where pr, and pr, are (continuous) projections on the first and the second component 
respectively. 

LEMMA 2.1. Let L : Dam(L) c X * Y be a closed linear operator. L is a Fredholm operator of 
index zero if and only if there exist two closed subspaces X0 c X and Y, C Y such that codim 
X0 = dim Y, < 00 and Gr(L) @ (X0 x Y,) = X x Y. 

Proof. Suppose that L is a Fredholm operator of index zero. Then Zm(L) is a closed subspace 
of Y and codim Zm(L) = dim ker(L) < ao. There exists X0 G X and Y, c Y such that 
ker L @ X0 = X and Zm(L) @ I$ = Y. It is easy to prove that Gr(L) n (X0 x Y,) = 
((0, O)]. Let (x,y) E X x Y, then (x,y) = (x0 + x’, L(x, + x’)) + (x0 - x’, y’), where x = 
x0 + x0 E ker L @ X0, y = y” + y, EZ~(L) @ Y, and x’ EX’ nDom(L) is such that 
L(x’) = yo. Consequently Gr(L) 0 (X0 x Y,) = X x Y. Conversely, if L is a closed 
operator such that Gr(L) @ (X0 x Yo) = X x Y, where dim Y. = codim X0 < 00, then 
ker L fl X0 = (0) and ker L + X0 = X, thus ker L @ X0 = X. On the other hand it can be 
verified that Zm(L) @ Y, = Y and thus Zm(L) is a closed subspace of finite codimension. 
Consequently L is a Fredholm operator of index zero. n 

Remark 2.1. Let L: Dam(L) C X + Y be a closed Fredholm operator of index zero. Then 
pr, : Gr(L) + Y is a bounded Fredholm operator of index zero. Since pr, : Gr(L) + Dam(L) is 
one-to-one and onto, the subspace Dam(L) can be equipped with a new norm II- [IL, called the 
graph norm, as follows 

II& := Il(p~J1(x)II = Ilk Wll = llxll + IILXII. 
The space Dam(L) equipped with II* IIL will be denoted by X,. It is clear that X, is a Banach 
space and L: X, + Y is a continuous Fredholm operator of index zero. 

We denote by Sub(X x Y) the set of all closed subspaces of X x Y. Sub(X x Y) can be 
equipped with the following metric function: 

dist( V,, V,) = d(B(V,), B(h)), V, , G E Sub(X x Y) 

where B( Vi), B( V,) denote the closed unit balls in V, and V, respectively and d( -, *) is the 
Hausdorff metric on bounded subsets of X x Y. Let 0,(X x Y) G Sub(X x Y) denote the 
subspace of all graphs of closed linear operators from X into Y. 

Definition 2.1. Let P be a topological space. A family (LA), E p of closed linear operators from 
X into Y is called continuous family of operators parametrized by P if the mapping 
9: P -+ 0,(X x Y), p(A) = Gr(LJ is continuous. 

Let 3,(X x Y) be the subset of 0,(X x Y) of all graphs of closed Fredholm operators of 
index zero. It follows from lemma 2.1 that 3,(X x Y) is open in 0,(X x Y). Let [LJxEp be 
a continuous family of Fredholm operators of index zero parametrized by P and let 
cp: P + 3,(X, Y) be defined by (p(A) = Gr(L,). By definition, p is continuous. We define 

Y:=l(&x,Y)EPXXx Y;(X,Y)E(P(~)l 

= ((A, x,y) E P x X x Y; x E Dom(L,,), y = L,(x)] 

and put R: y + P, n(A, x, y) = A. 
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LEMMA 2.2. Under the above assumption, the map IL: y + P is a locally trivial Banach vector 
bundle. For every A E P, the fiber over 1 is given by Gr(L,) = p(J). 

Proof. Let &, E P and let Gr@) = &,) be the fiber over &. By lemma 2.1 there exist 
subspaces X0 E X and Y, E Y such that codim X0 = dim Y, < a0 and Gr(L) 0 (X0 x Y,) = 
X x Y. By continuity of (D: P -+ 5,(X x Y), there is a neighborhood U of A0 such that 
Gr(L,) @ (X0 x &) = X x Y for all A E U, and thus Pi := PICrcLx) : Gr(L,) --* Gr(L), 
where P is the projection onto Gr(L) associated with the direct decomposition Gr(L) @ 
(X0 x &) = X x Y, is an isomorphism. Therefore we have the following commutative 
diagram: 

iJ x Gr(L) -.% yIu 

\ I 

where v(A, (x, y)) = (A, P;‘(x, y)) for (A, (x, y)) E U x Gr(L). The map w defines the required 
local trivilization of the bundle y over U. H 

Let & := ((A, x) E P x X; x E Dom(L,)) and let pi : y -, 8 be given by, pi@, x, y) = (1, x) 
for all (A, x, y) E y. By remark 2.1, for every A E P, pr,: Gr(L,) + XL, =: X, is an isometry, 
therefore the mapping p, : y + & gives us the identification of the bundle y with E. Under this 
identification, of: & --t P, n(A, x) = A, is a Banach vector bundle whose fiber over L E P is 
exactly the space X, := XLx. On the other hand, by the same remark 2.1, the projection 
pr,: Gr(L,) -+ Y induces the vector bundle morphism p2: y + Y, pz(l, x, y) = y for all 
(A, x, y) E y. We put L := p2 0 (p,)-‘, i.e. we have the following commutative diagram of 
vector bundle morphisms 

Y 

PI 0 PZ 

E-LY 

where L(A, x) = L,(x) for all (A, x) E E. This implies that the restriction of L to the fibre X, 
over I E P is exactly the bounded Fredholm operator of index zero L,: X, + Y. Assume that 
P is a compact connected space. It is well known that if P is contractible or if & is modelled on 
Kuiper space X0 (see [31] for examples and properties of Kuiper spaces), then there is a vector 
bundle isomorphism Y: P x X0 + E, where X0 is the typical fibre of E. The composition 
e = LY’:P x x0 + Y is exactly the continuous family of Fredholm operators of index zero 
considered in the setting of the Fitzpatrick-Pejsachowicz degree theory. 

A continuous map F: & -+ Y can be considered as a parametrized continuous family (F,], E p 
of perturbations of L. The map F does not need to be defined on the whole space G. Let Sz E X 
be an open and bounded set and let P: P x ~3 -+ Y be a mapping. The vector bundle morphism 
j: & -+ P x X induced by the imbeddings j,: X, -+ X, i.e. j(n, x) = (A, j,(x)), is a continuous 
map, thus x = j-‘(P x a) is a closed set and we have the following diagram: 



?+I x [I ‘01 
7 p 

x- x L 

u.mZk!p aql pue ,f 30 aDedsqns pmo!suauup al!ug B III pauyuo3 s! (Q x [I ‘@)_I 
leql qms A + 7s x [I ‘01 :J dew 13edtuo3 snonupuo3 e sy alaql v?q~ qms ‘a-! ‘A + X :y~ sdecu 
]UuO!suafU!p aqu!J 118 JO %xyysuo3 (;r, ‘X)7x 30 lasqns aql alouap aht (8 ‘X)7@ A8 *sam.uuIo3 

yU “;: ‘O1 

x- 1 
X 

umde!p %uy~ollo~ aqlley3qnsA + 7~ x [I ‘01 :J deuI snonuyuos e 
s! alaw put? 8 3 (x ‘7) II~ 103 (x ‘ y)~ z (x ‘y)7 1~~1 qmsA + X :J sdmu lmdtuo3 11~ 30 (8 ‘X-) 7~ 
SSgp Wl ?3aP Pus (CR? X [I ‘O]),_.f= &I ‘(7J X [I ‘O]),_.r= x lnd 'Z'Z ~~~~~~l.&,jOO~~ 

'd dq pazI.xlauxsled olaz xapu! 30 slowado KuIoqpalJ 30 Q.uq snonuyuo3 e 30 suog 
-eqmuad panp?+ynw snonuyuoa 6lalaIduIoD AIyeaM ‘snonuyuoy_uas laddn QysaM .1o3 salpunq 
roPaa uo dmaql aal%ap amapy_I~o3 aql 30 uo~pnqsuo~ aql ~03 [r] u! pagddt? SBM yaoldde 
S~J, .[g] u! em 6q pa!pnls aJaM papunoq ale sazeds ~euo~suaunp aly!3 ~I!M suo!paslaw! 
asoyA (X 30 am ayl u! se) suo!%al papunoqun bIq!ssod aql 1~y1 uoyuaur plnou(s ah+ ‘3oold 
mo %upuasald alo3aa *aar%ap aql30 LlladoJd uogxa aql %u!sn dq awo3IaAo aq uw uIaIqold 
syl ‘JaAaMoH *sat+? uraIqold t! ‘7~ x [I ‘01 wpold t? ow! X las ay$ mo3sue~$ &t?ssaDau 
IOU saop ,f, uo~lt?zga~~~n aq) asnma$J *suoyt?qmuad mduxoa 30 I1 ‘Ol 3 Y(b) @_ue3 pazylfmwed 
I? pm x 01 I_y uxol3 olaz xapur 30 slowado urIoypa.Id snonuyuoj 30 4!u11?3 pazyaumed 
ti? yelqo aM ‘3 alpunq aqi 30 3 t Ix x [I ‘01 :A uoyzzyz~~~.~~ B %u!sn Aq ‘LlpuoDac; *payddE 
aq lou ut?3 aal%ap ayl30 uoyluyap Imsn ayl ‘alo3alaql pm papunoqun aq ut?3 (u x d), _ [ = X 
las aql ‘sJowado .nt?au!l laeduIo3 aJe sauxgauros lnq smyd.xowos! lou ale ‘Imaua% u! ‘_y + y_y : y[ 
sfhnppaqwj ayl am!s ‘dps.ud wualqold atuos an2 alarI ‘JaAaMoH * 1.2 uIaJoaq1 30 amanb 
-asuo3 alwpamu! ue so amapem! Ldolouroq ahoqt? ay$ leyy 1Dadxa pIno:, auo 'pry sy [I'01 3 Y(Y7] 
4!um3 aqi rCq pauyralap [I ‘01 + 3 :U alpunq JopaA ayl wt~l ve3 ayl %u!sn *z-z ymzua~ 

*[a ‘(Id ‘ ‘7)lP T = [a ‘(“d ‘ O7)lP 
sp~oy aar%ap amaprmyo3 

ayl lo3 hadold ax~t?p~au! lCdolowoq %I!MO~IO~ ayl uayL ‘OJaz xapu! 30 slowado u.IIoqpard 
pas013 30 [I ‘01 3 Y Y ( 7) 4y1e3 snonuguo3 e bq paw3ap s! 7 aJaqM ‘7 30 uoyeqmvad alqyss!uIpE 

ue aqX + Q x [ 1 ‘01 :d ial pue ‘PS papunoq uado UB aq x 5 r’~ ‘[ 1 ‘01 = d ia? ‘z’z yuaxoa~~ 

-oJaz xapur 30 slowado wloypard pasop 30 d3Y(Y7) 4y1e3 
snonuguos B dq pauyap y 7 alay& ‘[I ‘01 3 y pue oe u (Y7)woa 3 x 11~ -103 (x ‘Q f y7 
PUB w?dwo3-7 sy J 3! 7 30 uqtyoqmwad alq!ss!urpu UB palIE s! d +u!ddm vvdwo3 
snonupuo3 e s! x L- X : 10 2 =: d uoy!soduroD aql 31 wdwo2-7 palpi? so x + ?J x d :d 
%u!ddeux v *aAoqe SE aq x x d + 3 :I la1 pm? a3eds wdtuo3 1? aq d la? ‘z’z uog!u!#a 

‘J 30 ssaugedwo3 ayl OSI’L! sagduy g 30 &‘w!luo~ ayl ‘d 3 y 11~ 
103 mdr.uo3 sy x + y_y : V alat+w asm aq) UI aro3alayL ‘wduroD-Y7 s! YJ 31 @IO pue 3! mduro3 
sy 5 ‘d 3 y Llama ~03 ley; leap s! 11 *snon&uoD ospi? s! d uaq] ‘snonykoo si d S.yddeuI aql31 

ESL 
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commutes. The classes 3c,&, a) and @‘La, a) can be equipped with @-noncoincidental 
homotopy relation (see [S]). The corresponding sets of equivalence classes are denoted by 
XL [x, @.I and QL,[K, a], respectively. It can be verified in standard way (compare [5, lemma 
3.101) that the inclusion i: (PLk, a) + 3C,k, a) induces a bijection 

i,: Q[x, a] 2 X,[x, @.I. 

For Q G X a bounded open subset, put xx := j- ‘((12) x M) and a, := j-‘((A) x %,2). An 
admissible perturbation P determines an element F = P 0 j : x + Y of XL(x, a). Since i, is a 
bijection, F is @-noncoincidentally homotopic to a finite dimensional map F” E (PL &, a). This 
yields the commutative diagram: 

Let I?A E CZ?(L,) be such that dim K, < 00. Then the equation 

L,(x) = F:(X), x E xx 

is equivalent to the following fixed point problem 

x = (L, + & Q-‘(F,” + Z?&(x), XEXX* 

Let Y, C Y be a finite dimensional subspace such that Ffk> C Y, and Zm Kx C Y,. Put 
X, = (L, + J?i 0 jJ_‘( Y,). The coincidence degree of Lx with Fi on Q can be defined by 

4(L&), Ql = Wd?), a21 := degL.,.G + Kf o.A>-‘@f + K&,X n G, 0) (2.3) 

where x n X, is now a bounded set. In this definition the sign of d[ a, -1 depends on the choice 
of the resolvent Kx. By the construction and the excision properties of the coincidence degree 
of Mawhin, the above constructed coincidence degree coincides with the coincidence degree of 
Mawhin. Let us remark that-the resolvent j?k is also a resolvent for Lx, where x belongs to 
some open subinterval 17 containing I. By using a trivilization over U and the finite dimensional 
reduction & *III . - .- ((1, x) E llu; x E (L,- + Rx)-‘( Y,)) we reduce the problem to a finite 
dimensional subbundle E *IzI of the bundle &ILI. Since Q fl (Li; + Rx)-‘(Y,) is an open 
bounded subset, it follows from theorem 2.1 that Id[(L,-, Fi, ), a][ is a constant function on 
U. Consequently, by the compactness of [0, 11, the statement of theorem 2.2 follows. n 

Remark 2.3. We remark that, by using the language of bundles, we can extend the notion of an 
admissible perturbation of L to more general classes of mappings. For example, we can study 
L-condensing perturbations, or multivalued perturbations satisfying additional conditions 
(cf. [5]). The coincidence degree theory of Mawhin for those classes of perturbations were 
studied in [20, 211. Using the standard approach, it can be proved that in all mentioned cases 
the homotopy invariance property, admitting continuous deformations of the linear part, is still 
valid. 

3. A REDUCTION THEOREM FOR PERIODIC BOUNDARY VALUE PROBLEMS OF 

NEUTRAL EQUATIONS 

Let C([a, b], R”) be the space of continuous functions from [a, b] to R” with the topology of 
uniform convergence. For a fixed r L 0, let C = C([ - r, 01, R”) with norm /~]I = sup I&@] 

45 850 
for q E C. If x E C([a - r, o + 61, R”) for some 6 > 0, then x, E C, t E [a, (T + 6], is defined 
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by x,(0) = x(t + 0) for 8 E [- r, 01. Suppose w > 0 is fixed, A : R x C -+ R” is continuous, 
A(t + w, p) = A(t, VP), A(t, V) is linear in cp and there exists a continuous function 
v: [0, 05) + R, v(0) = 0, such that IA(t, @)I 5 v(s)IJ$IJ for 0 5 s s r, t E R and for all func- 
tions Q’ E C such that $(f?) = 0 for 0 E [- r, --s]. Let D: R x C + R” be defined by 
D(t)u, = p(O) - A(t, p). The operator D is said to be stable if the zero solution of the functional 
equation D(t)y, = 0 is uniformly asymptotically stable, that is, there are constants K, (Y > 0 
such that if y(p) is the solution of D(t)y, = 0 with y0 = p, then 

ll~~(~)ll 5 Ke-“‘lb11 for C 2 0 and 0, E c. 

Let P,,, = [h E C(R, R”); h(t + w) = h(t) for t E R) and &I, = (HE C(R, RR); H(0) = 0, 
H(t)=cut+h(t)forsomeaER”andhEP,).ForanyhEP,,let(hl = sup Ih(t)l,andfor 

OStSW 

any H E H,, H(t) = at + h(f), CY E R”, h E P,, let IHI = Ial + Ihj. Then P,,, and H, are 
Banach spaces. 

We consider the neutral functional differential equation 

$ D(t)x, = f(t, xt) (3.1) 

where D is defined above and f: R x C + R” is completely continuous and w-periodic in the 
first argument. Let L: P,,, + H,, be the continuous linear mapping defined by 

Lx(t) = D(t)x, - D(O)x,, teR 

and G: P, + H, be defined by 

Gx(r) = 
i 

‘I@, x,) ds, t E R. 
0 

Then finding w-periodic solutions of equation (3.1) is equivalent to solving the operator 
equation 

Lx = Gx in P,. 

The Fredholm alternative theory (cf. [13]) of the equation D(t)x, = H(t) for H E H,,, implies 
that L is a continuous Fredholm operator of index zero, and an immediate application of the 
Arzela-Ascoli theorem shows that G is completely continuous (cf. [15]). Therefore, the 
coincidence degree d[(L, G), Q] is well defined for any open bounded set Q c P, such that 
0 $ (L - G)@SZ). The following result, due to Hale and Mawhin [15], is an immediate conse- 
quence of the existence property of coincidence degree. 

THEOREM 3.1. If there exists a bounded open set Q s P, whose boundary a!2 contains no w- 
periodic solution of the equation (3.1) and if the coincidence degree d[(L, G), a] # 0, then 
equation (3.1) has at least one w-periodic solution. 

Application of this general result requires solving two difficult problems-finding a priori 
bounds and estimating d[(L, G), a]. The major purpose of this section is to reduce the estima- 
tion of d[(L, G), f.21 to the existence problem of periodic solutions to the retarded equation 

$x(t) = At, 4 (3.2) 
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COROLLARY 3.1. Assume that 
(H6) for any A E [0, 11, the operator D,: R x C -, R” defined by DA@, p) = q(O) - LA(t, (P) 

is stable, 
and that there exists an open boundary set L2 E P, whose boundary %I contains no w-periodic 
solution of the equation (3.3), for ,I E [0, l] and d[(L,, G,), a] # 0, where L,, and 
Go: P, --* H,,, are defined by &,x(t) = x(t) - x(0) and G,x(t) = ~bf(~, x,) d.s. Then there exists 
at least one w-periodic solution to the neutral equation (3.1). 

Remark 3.1. (H6) is a physically meaningful assumption. To illustrate this point, we consider 
the following D-operator defined by 

D(r, (D) = q(O) - i R,(t)& - ri) - 
0 

g(f, @v@) do 
i=l i -r 

wheretER,y,EC,ri>O,Bi:R-*RnX”,i= l,...,m,andg:Rx [-r,O]+RnX”arecon- 
tinuous and w-periodic in the first argument. It can be shown that the D-operator is stable if 

;!, IRi(t)I + 
s 

’ k(t, 01 de < 1, teR (3.5) 
--r 

(cf. [2, 23, 24, 301). Although it is possible to obtain some more general sufficient conditions 
guaranteeing the stability of the D-operator, Melvin [30] proved that (3.5) is the most physically 
meaningful condition for the stability of D-operator in the sense that D-operator preserves 
the stability. under small perturbation of ri. It is easy to verify that if (3.5) holds, then 
DA : R X C -+ R” defined by D,(t, p) = p(O) - AC:= 1 Bi(t)p( - Ti) - AjtI g(t, @p(0) df9 is stable 
for L E [0, 11. 

Remark 3.2. Reducing the solvability problem of the periodic boundary value problem for the 
neutral equation (2.1) to the problem of estimating the degree d[(L,, Go), SI] is significant 
because there have been various results developed for the estimation of the coincidence degree 
d[(L,, Go), Sz] associated with the existence of periodic solutions to the retarded equation (3.2). 
To illustrate this significance, we present the following result. 

COROLLARY 3.2. Assume (H6) holds, and there exist a constant p > 0 and a completely con- 
tinuous map g: R x C x [0, l] -+ R” which is w-periodic in the first argument, g(t, cp, 1) = 
f(t, rp) for (t, p) E R x C and such that 

(i) 13B(p) contains no w-periodic solution of the equation (3.3),, where B(p) = 

(XEP”; 1x1 <PIi 
(ii) aB(p) contains no w-periodic solution of the equation k_ = Ig(t, x,, A) for I E [0, 11; 

(iii) aB,n(p) contains no zero of the mapping go : R” + R” defined by g,(a) := 
l/wjI g(t, ci, 0) dt, where B,p(p) denotes the open ball centred at 0 of R” and of radius p, ci 
denotes a constant mapping in C with the value a E R”; 

(iv) the Brouwer degree d(g,(a), Bp(p), 0) f 0. 
Then there exists at least one w-periodic solution to the neutral equation (3.1). 

Proof. According to the proof of [26, theorem 41, d([L,, Go], B(p)) = d(g,(a), Bp(p), 0) if 
the assumption (ii) and (iii) hold. Therefore by corollary 3.1, if (i) and (iv) hold then there exists 
at least one w-periodic solution to the equation (3.1). 
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Remark 3.3. In [ 151, Hale and Mawhin proved a similar result replacing go(a) by 
l/wjzg(t, (Ma),, 0) dt, where Ma is the unique solution of the functional equation D(t)x, = a. 
The advantage of our result is obvious since it is usually difficult, if not impossible, to find an 
explicit expression for Ma. 

Remark 3.4. The proof of corollary 3.2 indicates that once an existence result is proved for a 
retarded equation by using the coincidence degree theoretical method, and a priori bounds are 
established for neutral equations, this existence result holds automatically for neutral equa- 
tions. More results can be obtained in this way. We list in the following some of these results 
for the convenience of application. 

COROLLARY 3.3. Assume that (H6) holds and there exists an open bounded set Q c P,,, sym- 
metric with respect to the origin, containing it and such that &LJ contains no w-periodic solution 
of each equation 

-&(0Xt = g(t, x,3 A), A E 10, 11, 

where g: R x C x [0, l] + R” is completely continuous, w-periodic in the first argument, 
g(t, P, 0) = -g(t, -(p, 0) and g(t, ~7, 1) = f(t, 9) for (t, p) E R x C. Then equation (3.1) has at 
least one w-periodic solution in Q. 

This is an immediate consequence of corollary 3.2 and [26, theorem 31. We should mention 
that this result was established in [15] by using an extension of the Borsuk theorem given in [27, 
theorem 7.21. 

COROLLARY 3.4. Assume (H6) holds, and there exists an open bounded set G c R” such that 
(i) 8G contains no w-periodic solution of the equation (3.1), for A E [0, 11, where 

G = lx E P,; x(l) E G for t E RJ; 
(ii) for each u E aG there exists a q, E C’(R”, R) such that Vu(u) = 0, G c (u E RR; 

V,(v) < 0) and for any x E P,,, with x([O, w]) c G, at any r E R with x(r) = U, one has 
(grad K, f(t, x8 f 0. 

Then there exists at least one w-periodic solution to the neutral equation (3.1) if the Brouwer 
degree d(J G, 0) # 0, where s(u) = l/wj,“f(.s, ri) ds and fi is a constant function on R” with 
.value u E R”. 

This is a consequence of corollary 3.1 and a corresponding existence result for retarded equa- 
tion (cf. [29, theorem V 11.91). We note that the existence of such a set G can be guaranteed by 
a guiding function. For details, we refer to [29] and the next section. 

Finally, we point out that the solvability of periodic boundary value problems of neutral 
equations can also be reduced to the corresponding problem of an ordinary differential equa- 
tion in some cases by using corollary 3.1 or theorem 3.2. For example, let J(d, t)p = U(t, (p) 
and g(t, (0~1) = (1 - A)h(t, v(0)) + AJ(t, (D) in theorem 3.2, and we get the following. 

COROLLARY 3.5. Assume (H6) holds, and there exists an open bounded set Sz G P, whose 
boundary aL2 contains no w-periodic solution to the equation 

$ [x(t) - nA(r,xt)l = (1 - JWU,x(t)) + M&X,), A E P, 11, 
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Proof. Denote by BC the space of bounded continuous functions on R with the norm 
and by E the set of the n x n matrix measure < satisfying 

For [ E E, we define the operator r * : BC + BC by 

r * p(t) = 
s 

+- ]d<(s)lCo(t - s) for t E R. 
-ca 

Let 6 denote the measure 

s(t) = 
i 
;) 

ift50 

ift>O 

and extend q to an n x n matrix measure on (- co, + co) by defining q(t) = 0 for t I 0 and 
q(t) = q(r) for I L r, then 

with 

In [37], Staffans proved that px * continuously maps BC into itself, it is invertible and its 
inverse operator PC’ * 6 is also continuous. Moreover, &’ * px = pA * &’ = 6 and px, p;’ E E. 
Using these notations, the equation DA(x,) = g(t) for g E BC can be solved and x(t) = 
(JJ;’ *g)(t). Noting that (6 - Aq)-’ can be expressed by the series 6 + Aq + A2q * tf + 
A’~*~*~ + *** which is uniformly convergent for A E [0, 11, we see that if g E P,, then 

Iml 5 (1 + 4lvllo + ~211%112 + ““,~f”W] ml 

I max, E co. wl IgW I 
1 - Var~o,rjv 

which implies that if (Dx(x,), D,(x,)) II h for t E R, then Ix(t)1 I a/(1 - Varto,,ltl). There- 
fore our conclusion follows trivially from lemma 4.1. 

Example 4.2. Consider the following neutral equation 

z WI - BUM - 41 = f(t, x,1 (4.2) 

where B: R --* R” xn is a w-periodic and continuous map and jB(t)l I k < 1 for t E R and for 
a constant k. We claim that the function I’: R” + [0, co) defined by V(x) = (x, x) is a guiding 
function for the periodic boundary value problem of equation (4.2) if there exists a constant 
p > 0 such that 

(x(t) - A&t)@ - r),f(t,x,)) < 0 

for every x E P,,,, 1 E [0, 11, t E R with Ix(t) - LB(t)x(t - r)l h p and 

Ilx,ll ~ Ix(t) - WOxU - 61 
l-k ’ 
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Proof. It is easy to verify that for any g E BC the functional equation x(t) - AB(t)x(t - r) = 
g(t) has a solution 

x(t) = E Ai ‘i B(t - jr)g(t - ir) + g(t). 
i=l j=O 

Therefore if Is(t)/ I h for t E R, then Ix(t)] 5 [I?=, A’h! + l] 5 h/(1 - k). Our conclusion 
then follows from lemma 4.1. 

The method of guiding functions and Liapunov-Razumikhin technique have been used for 
the study of stability of both retarded equations and neutral equations (cf. [12, 14, 23, 24, 35, 
36, 401) and for the study of apriori bounds of retarded equations (cf. [lo, 11, 16, 17, 22, 291). 
The following result is a generalization of these results to a priori bound estimate of periodic 
solutions of neutral equations. 

LEMMA 4.2. If there exists a guiding function V: R” + [0, co) for the periodic boundary value 
problem of equation (3.1) such that 

lim sup inf V(Dx(t, x,)) = 00 
[XI+00 t E R x E [O, 11 

for x E P,, (4.3) 

then there exists a constant p* > 0 such that any w-periodic solution to the equation (3.3),, 
A E [0, 11, satisfies Ix(t)] c p* for t E R. 

Proof. Let x(t) be a w-periodic solution to equation (3.3), for some 2 E [0, I]. Then 
V(D,(t, x,)) is also a w-periodic function, and thus there exists r > 0 such that V(Q,(r, x,)) = 

max, E to, we I/(D, 0, xt)) and (grad IV% (r, x,)), f(r, x,)> = 0. Therefore by the definition of a 
guiding function, ]D,(T, x,)] < p. This implies that V(&(t, x,)) 5 in V(z) from which we 

obtain Ix(t)] < p*, where p* > 0 is a given constant such that for any x E P, and A E [0, 11, if 
1x1 2 p*, then V(D,(t, x,)) 7 ~2 V(z) for some t E [O, w]. 

We are now in the position to state our major result in this section. 

THEOREM 4.1. Assume (H6) holds and suppose that there exists a guiding function 
V: R” + [0, 00) for the periodic boundary value problem of equation (3.1) such that (4.3) holds. 
If the Brouwer degree d(grad V, G, 0) # 0, where G = (U E R”; I V(u)l < v) and v is a constant 
such that v > ,Umz; ( V(u)/, then there exists at least one w-periodic solution of the t 
equation (3.1). 

Proof. Let I = 0 in the definition of a guiding function, we get (grad V@(i)), f(t, x,)) < 0 
for every x E P, t E R with Ix(t)] L p and V@(s)) s V(x(t)) for s E R. It is easy, from the 
definition of a guiding function, to verify that G = [v E R”; / V(u)l < v] satisfies (ii) in corollary 
3.4, and (grad V(U), Jr(u)> < 0 for every u E R” with ]u] L p. Therefore by the generalized 
Poincart-Bohl theorem (see [29, proposition 11.9]), &grad V, G, 0) = d(x G, 0) # 0. More- 
over by lemma 4.2, for any possible w-periodic solution x(t) to the equation (3.3),, Iz E [0, I], 
Ix(t)] c p* and thus I ~(x(t))I < v which implies that XE$ &?, where G := lx E P,; x(t) E G 
for t E R). Therefore by corollary 3.4, there exists at least one w-periodic solution to the 
equation (3.1). n 
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For illustrative purposes, we consider the following equation 

where 

dtl(tWo - 8) 1 = Ax(t) + f(t, xt) (4.4) 
0 

(i) q is y n x n matrix function whose entries are of bounded variation on [0, r] and 

Varto,,lrl < 2r 
(ii) there exists a constant pi > 0 such that 

1 - 2 IAIVar,,,,lq + sup 
[ 

I.fX e9l 
- 

Ml 1 11 - Varto,rIrll-l > 0; I‘&vl ZP, 
(iii) AT+ A = -Id. 

COROLLARY 4.1. Equation (4.4) has at least one w-periodic solution. 

Proof. By remark 3.1, (H6) holds with DA(~) = ~(0) - A& dtf(6)& - 0). Let V(x) = (x, x). It 
is easy to prove that for any x E P, and A E [0, 11, if Ix(t*)l = ?Ey Ix(t)1 for some t* E R, then 

I~x~xt+N = tit*) - A rdtlUWO* - 0) 1 11 - Vqo,rIrrllx(t*)l. 
I 5 0 

This implies that 
lim inf sup Ia( = 009 
1x1 +oo A E [O.l] f E [O.w] 

and therefore, V satisfies (4.3). 
Let p = [l - Vart,,,ltl - (1 - Varto,ll~)-l]-l~, . Suppose x E P, and t E R are such that 

D~(xJ 2 P and IDA( 5 Dk(x,)l f or s E R. Then putting H(t) = D,,(x,), we get 

x(t) = [a - nr#q-‘*H(t) = H(t) + Aq*H(t) + Pq*q*H(t) +*** 

from which we have 

LWI 2 IfWl - ma I~OIVarIo,rItlU - VarIo,r18)-1 s E IO.01 

and 
= 11 - Varlo,,lv(l - Var~o,,~rl)-lllfW)l 2 13 

Therefore 

IWI 5 IfWl + ,y;;, IfWIVar~o,r~tl(l - Var[o,rN 

5 (1 - Var~o.rIrl)-‘lW)l 5 (1 - Var~o,r~tl)-lI~~(x,)l. 

(grad WA(x,))J(t, -G + -Mt)) 

s 

r 
= -@x(x,), D,(M) + 2W,(x,),.N, -9) + 2Wx(x,), AA dtt(e)x(t - 0)) 

0 

d: - IRCd12 + 2 IAIVar,o,rlrl + 
[ 

Im xt)l Ilx,ll 1 Ildl Iawl 

5 - I~x~xtN2 + 2 sup [l - Var,,,,~~]-‘IDx(x,)12 < 0. 
I!0)l SP1 1 
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Hence, Vis a guiding function for the periodic boundary value problem of equation (4.4). Since 
the Brouwer degree 

d(grad V, BRn(v), 0) = (- I)” # 0 

for any v > 0, by theorem 4.1, there exists at least one w-periodic solution. 
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