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1. INTRODUCTION

I~ [7] STAFFANS demonstrates that a neutral functional differential equation (FDE) with stable
D-operator often can be treated as a retarded FDE with infinite delay. The main purpose of this
paper is to illustrate how Staffans’ ideas can be employed effectively to study the asymptotic
behavior of solutions of certain nonlinear, nonautonomous neutral FDEs. In particular, we
consider the scalar neutral equation
d
P x(?) = ex(t — n} = Flt, x(2), x(t — Nl(t = 0), ()
where
@H0=<c<l,r>0,
(i) F:{0,00) x R* — R is continuous,
(iii) x = y implies F(t, x,y) < 0,
(iv) x < y implies F(t,x,y) = 0,
(v) for any compact interval I of R there exists L = L(/) = 0 such that
IFt,x, )l = Llx -yl (x,yel, t=0).

The above assumptions imply that each constant function is a solution of (1), and, once the
appropriate setting is established, we will prove that (i)-(v) are sufficient to guarantee that each
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solution of (1) tends to a constant as + — +c. Among the consequences will be a partial answer
to a conjecture in [1], but in a more general framework than considered in [5]. Likewise, the
results given here are intended to supplement the convergence theorems in {4], where the setting
was for autonomous retarded (c = 0) FDEs. So, for certain cases, our results generalize those
given in [4].

It is standard to consider equation (1) in the state space C, (the space of continuous functions
on [-r, 0] with norm ||¢| = max_,_,.,l®(s)]). Existence, uniqueness and continuation of
bounded solutions of (1) can be shown easily (see [2]). In Section 2 we prove the boundedness
of solutions of (1) under conditions (i)~(v). Thus, we may assume that for any ¢ € C, the solu-
tion of (1) through (0, ¢) exists on [0, ). For our purpose the space

)

C, = {qﬁ € C((~, 0], R): lim e¥’¢(s) = O}

with y > 0 such that ce” < 1 and norm [|¢]l, = sup, ., e”|¢(s)| has more advantages. The
initial function ¢ € C, can be extended to (-, 0] such that ¢ € C,. So, we assume that ¢ € C,
is given and consider a solution (1) through (0, ¢) on the interval [0, ). By introducing the
natural transformation

y)=x(¢) —cx(t —n) (te R), 2)

the retarded equations with infinite delay

Y = F(t,y(r) + Xyt —in, ¥y - ir)) (t=0 3)

i=1 i=1

can be obtained for y (see [6] and Section 3 of this paper for details). The initial function
belonging to y at ¢t = 0 given by (2) for ¢ = 0 is an element of C, . Since C, satisfies the basic
local state space axioms of [3], existence, uniqueness and continuation of solutions of (3) also
are valid under conditions (i)-(v).

Therefore, a class of retarded equations with infinite delay arises from the investigation of
solutions of neutral equations. However, this class of retarded equations is different from the
types investigated in much of the literature, because we cannot find a separate ordinary part
which dominates the functional part. Actually, both terms in the second and third variables of
F on the right hand side of equation (3) are functionals depending on the values of y in the
intervals (—oo, t]. Thus, to investigate asymptotic behavior of solutions for this class of
retarded equations with infinite delay, some modifications and improvements are required on
methods and results developed for those with a dominating ordinary part.

In Section 2, first we introduce certain auxiliary functionals. By establishing monotonicity
properties and limit behaviors of these functional along the solutions of (1) we conclude that the
convergence of bounded solutions of (3) as ¢+ — oo implies that of each solution of (1) as ¢ - co.
A modification of the idea of [5] will lead to the asymptotic constancy of bounded solutions of
(3), and consequently, to the asymptotic constancy of all solutions of (1), which is the main
result of this paper. Therefore, as was mentioned, we can give a partial solution to a conjecture
presented by the first author in [1].

In order not to hide the main idea behind general and technically complicated statements, we
restrict our discussion to equation (1). In Section 3 possible extensions will be indicated.
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2. THE MAIN RESULT

Define the functionals V, W: C, — R by

V(¢) = max {_rngiod%sx (6(0) — co(=n)/(1 - 6)},

W(¢) = min {_rﬂslisrioﬂs), (#(0) = ca(=n))/(1 - C)}

For a function x: (—o0,a) > R and ¢t < alet x,: (—=, 0] — R be defined by x,(s) = (¢ + 3),
s=0.
Monotonicity properties of ¥ and W along the solutions of (1) are given in the next lemma.

LemMma 1. If x is a solution of (1) on [0, 8), # > 0, then V(x,) is nonincreasing and W {(x,) is
nondecreasing on [0, 3).

Proof. We show only the monotonicity of V, since the proof is similar for W.
Let v(¢) = V{x,), u,(¢t) = max_, o, <o X(¢ + 5), u(t) = (x(¢) — ex(¢ - r))/(1 = ¢). We examine
three cases:
case 1: u,(2) < uy(t),

case 2: u,(t) > uy(r),
case 3: u,(¢) = u,(¢).

Case 1. Here D*v(f) = DY uy(t) - u,(t) < Uy(¢) implies x(2) < (x(2) — cx(t — r))/(1 — ¢) and
¢ # 0. Hence x(t) > x(¢ — r), from which one obtains D*u,(¢) < 0 by using (iii) and (1).

Case 2. Now D uv(t) = D u,(t) - u,(t) > u,(t) and x(¢) = u,(¢) are incompatible. x(¢) < u,(¢)
implies D*u,(¢) < 0.

Case 3. In this case D" uv(t) < max{D*u,(t), D u,(1)} - u (1) = ux(t) gives x(t — r) < u,(¢) =
(x(¢) = cx(t — r)/(1 = ¢), from which x(¢) = x(¢ — r). Therefore, by (iv) and equation (1),
D*u,(t) < 0. If ¢ = 0 then u,(¢t) = x(¢) and by (iii), and (1) the equality x'(¢) < 0 holds.
Since obviously D*u,(¢) = max{0, D*x(¢t)}, we also have D*u,(t) < 0. Suppose c # 0.
Clearly x(r) < u,(t) gives D u,(t) = 0. Assume ¢ # 0, x(¢) = u,(t) = u,(t). Then x(t) =
max_,<s<oX(¢ + 8) = x(t + 5) = x(¢ — r). In order to have D u,(t) < 0 it is enough to show
that D*x(t) < 0. Suppose the contrary, i.e. D*x(¢) > 0. Then there is a sequence {4,} such that
h, >0, h, = 0(n = ), limsup,_ ,(17h,)(x(t + h,) — x(¢)) > 0. Using that D*u,(¢t) < 0 and
X(t — r) = max_,.,<oX(t + 5), we have

0= (1 — o)D*uy(t) = lim sup h; ' (x(t + h,) — x(t) + c(x(t — 1) — x(t + h, — 1))

= lim sup ;' (x(t + h,) — x(t)) > 0,
a contradiction. Thus D*x(¢) < 0 and D*u,(¢) < 0.
So, D*uv(t) < O for all cases, which implies our statement.
The following corollaries can be obtained from lemma 1.
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CoroLLARY 1. If x is a solution of (1) on [0, £), 8 > 0, then x is bounded.
CoRroLLARY 2. Any constant solution of (1) is stable.
Our next lemma gives some limit relations between V(x,), W(x,), and the maximum and

minimum of solutions on intervals [t — 27, t].

LemMa 2. If x is a solution of (1) on [0, =), and

v = lim V(x,), w, = lim W(x,),
[ ads"] Sl
then
lim max x(t+s) = v, lim max x(¢t + 5) = w,.
t—w -2r<s=<0 t—ew -2rss=0

Proof. The cases v, = wy and ¢ = 0 are evident. Assume v, > w,y and ¢ # 0. Choose ¢ > 0
such that ec/(1 — ¢) < vy — w,.

If the first limit does not exist or is not equal to vy, then there exists 7 = r such that
Wix)=w,—¢€ for all t=T - r and max_,,<;<0X(7T + 5) < vy. By lemma 1, W(xy) <
wo < Vg = V(xp). Consequently, min_, ., .o X(T + 5) < wy. So, there is [T — r, T] with
x(%y) = w,y. Then

Vo = (x(g) — cx(ty — m)/(1 — ¢) s (wg — c(wy — €))/(1 —¢) = wy + ec/(1 =) <y,

is a contradiction. Therefore the first limit exists and equals v,.
The proof of the second statement is similar.

LemmMa 3. If x is a solution of (1) on [0,), @ € R and
lim(x(¢) — cx(t — r))/(1 — ¢) = «,
Il

then
Iim x(¢) = a.

t— oo

Proof. 1t is enough to prove that v, = w,. Clearly, vy = a = wy. Assume vy > «. Let
0< e < (vyg— all — ¢)/(1 + ¢). There is a sequence {t,} with ¢, =« (n = ) and x(¢,) =
vy — & X(t, — 1) = vy + & Then (x(t,) — cx(t,) = /(1 =)= (vy— € — c(vg + &))/(1 —¢) =
v — &(1 + ©)/(1 — ¢) > «, a contradiction. Likely, a > wj is also impossible.

The proof is complete.

Therefore, in order to get asymptotic constancy of solutions of (1) it is sufficient to show that
any bounded solution of (3) belonging to an initial function in C, tends to a finite constant as
t — oo, This will be done in the following lemma by using the idea of [5].

Lemuma 4. If y is a bounded solution of (3) through (0, ¢), ¢ € C, on {0, «), then y has a finite
limit as ¢ — oo,

Proof. From y, € C,, y > 0, and the boundedness of y on [0, =), the existence of K > 0
follows such that || y,|l, = K (+ = 0). Then

y)+ Y eyt —-in| =K+ ¥ cKe"=K/(1 —ce”) (t=0)

i=1 i=1
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and

Y eyt — in| <= Ke"/(1 — ce) (t = 0),

i=1

where, and in the sequel, we mean 1 for 0°.
Suppose lim, ., y(¢) does not exist, that is

a €' lim inf y(t) < lim sup y(¢) d=efb.
I fad- ]

{— oo

Let d € (a, b) and L = L({—M, M]), where M = Ke'/(1 — ce’). Define € > 0 such that
b+e+3d-b-eexp(—Lr/(1 —¢)) < b.

Let t;, = 0 be given such that ¢ = ¢, implies y(¢) < b + €. Choose ¢, = ¢, such that y(¢,) = dand

2LM(1 - c)S (ce=dr < L(b + € ~ d)exp(—=Lr/(1 = ¢)),

2

where [-] denotes the integer part.

Let
v(t) = max y(t) (t=t).
nssst
We are going to show that
D*u(t) < Lc=2/0(b + & — v(1)) + 2LM(1 — c)(ceX )=/, 4)

In both the case where y(¢) < v(?) and the case where y(¢t) = v(¢) and y'(t) < 0 we have
D*v(t) < 0. Since the right hand side of (4) is nonnegative we obtain (4) for both cases. Now
assume y(t) = v(¢) and y’(¢) > 0. Then by assumption (iv)

() + E iyt — in < Y Ty~ in).

i=1 i=1

So, from condition (v) one has

Y@L Y (" = cHt = in = y)).
i=1
Now, using that y(t) = (1) implies y(¢) = y(t — infori=1,...,[(t — t,)/r], y(t) < b + €0n
{¢,,9), y(t — ir) = Ke™ for ¢t = 0, we conclude that

)

yoysL Y (= cHot - in -y

((t=22)/r]+1

{e—t))/r] -
sL Y (@ '-core-yN+L L (€ - d)Ke + K)

{(t—t2)/r]+1 [(¢=t1)/r)+ 1
< Ll Wb + & — y(1)) + 2LM(1 — o)(ce” )71,
y

Since y(¢) = v(¢t) together with y'(¢) > 0 implies D*v(t) = y’(¢), we obtain (4) for all t = ¢,.
From well-known differential inequalities (see e.g. [6, theorem 1.10.2)), it follows that
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v(t) = w(t) on [, ), where w(¢) is the unique solution of the initial value problem

w'(t) = Lc21b + e w(t)) + 2LM(1 — e)ce™) =y ae. on [1,, )
w(tz) = d.

That is,

t
vt)<sb+e+(d-b-¢ exp(—j Lc“’"z’/’]> ds
n

t t
+ j 2LM(1 - c)(ce™)l-/1 exp(—j Lcle-o/1 dr> ds
H 5

o

sb+e+d-b-¢ exp(—j Lt ds> + 2LM(1 - c)j (ce”)le=11 4g

0 [#)
<b+e+(d-b-c¢eyexp(~Lr/(1 = ¢)) + (b + ¢ — d)exp(—Lr/(1 = ¢))
<b (t = t,).

Hence b = limsup,.,y(¢) < limsup,., v(¢t) < b follows, a contradiction. This proof is
complete.

Out main result below now follows readily from the previous lemmas and the fact that we
have set y(t) = x(¢t) — cx(t — r).

THeOREM 1. Under conditions (i)-(v) each solution of (1) tends to a finite limit as t — .

Example. Consider the equation.
(d/dD)(x() — ex{t — ) = (1 + sin ) (=h(x(t)) + hix(t — DY), (5

where 0 s c < 1, r >0, h: R — R is nondecreasing and locally Lipschitzean. By theorem 1,
each solution of (5) tends to a finite constant as ¢ — co,

3. REMARKS

1. The ideas of lemmas 1, 2 and 3 also work for more general equations than (1). For
example, consider the scalar neutral equation
ro

x(t + 5) dv(s)) = F<t, x(f),j

0

-r

(d/dt)(x(t) - cj x( +5) dv(s)> (t=0), (6)

-r

where conditions (i)-(v) also are assumed, v : [-r, 0] = R is nondecreasing and {°,dv = 1.
If we define the functionals by

0
V(g) = maX{ max0¢(S), <¢>(0) - cj o(s) dv(s)> /(1 - c)‘g,

0
W(¢) = min {_ min0¢(5), <¢(0) - CS ¢>(S)dV(S)> /(1 - C)I,

then lemmas 1, 2 and 3 are valid for equation (6).
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Let y > O be defined such that

0
cj e Y dv(s) < 1.
Extend v to (=0, 0] with dv(s) = 0 for s < —r. Let u = d — cv, where d(s) = 0 for s < 0,
6(0) = 1. From Staffans’ result [7] it follows that the convolution operator u*, defined by

0

u*ou) = g d(u + s) duls) u=0),

maps C, continuously into C,, its inverse -

and is given by

* also exists and maps C, continuously into itself,

W= O 4 oove + CPvrvr + vrvevr + oo
In the same way as in Section 1, the solution x of (6) can be extended to (-, 0] with x, € C,.
By using the transformation y = g *x, that is y(t) = x(¢) — ¢ {°, x(¢ + s) dv(s), we obtain
x=p"t*yand

0
Y = F<t, (u! *yr)(O),S (" * y)() dV(S)> (t=0). M

If yo € C, and y is a bounded solution of (7) on [0, ) then there is K > 0 with |||, < K,
t = 0. In addition,

[(u™ " * y)O)| = |y(t) + c(v =y )(0) + 2(* * y)(O) + -+
<KQ+qg+qg*+--)=K/(1-q)
and

]
S W y)O| = [ *3)(0) + c(v? * y)0) + (V> % )0 + -]

<K@+q¢*+¢ +-)=Kqg/(1 - g),
1

where g = ¢§%, e dv(s) < 1, vi*y, = vy, v¥= 2y, = v (v¥ x y,). It also follows that

0 o
S (U™ % y)(s) dv(s) — (u™" %y, )(0) = -El(CH = YO *y)0) - y(2)).

Therefore the symptotic constancy of bounded solutions of (7) can be obtained analogously
to that of (3).

2. We employ the phase space C, only for the purpose of extending an initial function of
¢ € C, to (— =, 0] such that the natural transformation (2) is invertible and the equation (1) can
be related to the retarded equation (3) with infinite delay. Such a technical procedure can be
avoided if we restrict our discussion of asymptotic behavior of solutions to a compact invariant
subset Q of C,, invariance means that any solution in Q can be uniquely extended to
(-0, +0). For example, for any ¢ e C,, the orbit of (1) through (0, ¢) is relatively compact by
corollary 1, and thus the w-limit set w(¢), is compact and invariant. If € w(¢), we can find
a bounded continuous function x : (—e, +) ~ R with x, = ¥ and such that (1) holds for all
t € (—~o0, +®). Evidently, the transformation y(¢) = x(¢) — cx(¢ — r) is invertible with x(¢) =
¥(t) + T2, ¢yt — ir), and y(¢) satisfies (3). Therefore y(¢) has a finite limit by lemma 4,
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which in turn indicates x(¢) is convergent to a finite number according to lemma 3. Therefore
convergence of solution through (0, ¢) follows from the convergence of solutions in w(¢) and
the stability of any constant solution.

3. The statement of lemma 4 is interesting in itself for retarded differential equations with
infinite delay. It can be extended partly as follows.

LemMma 4. Assume that conditions (ii)-(v) hold; the functions #, ¢ : (-, 0] — R are non-
decreasing, {®,dd < o, {°.dn =1 and [°,|s| dn(s) < . If the function y: R — R is con-
tinuous, and bounded on (-0, 0], continuously differentiable on [0, ), and satisfies

0 0 0

y(t + ) d&(s)) (t = 0),

-0 —

Yy = F<t, ) + S Yt + ) dﬁ(S),j y(t + s)dnis) + S

then y(¢) tends to a finite limit as ¢ — oo,

The proof can be carried out similarly to that of lemma 4. So, it is omitted.

Let us remark that y, € C, in lemma 4, while y, is bounded and continuous in lemma 4’. In
order to get asymptotic constancy of solutions either of (1) or (6), it is enough to consider (3)
and (7) with bounded y,, since we can extend x to (-, 0] such that y, is bounded. It is possible
to give another extension of lemma 4, where y, is in a phase space used in the theory of differen-
tial equations with infinite delay (e.g. C,, see [5]).

Notice that lemma 4’ is not true without the monotonicity property of #. To show this,
consider

Y = —<y(t) + %y(t - 1)) + (— %y(f -+ %y(t =)+t -4+ %y(f - 1)> (t=0)

and observe that y(¢) = sin(nt/2) is a solution.
4. The Lipschitz property (v) of F is used only in the proof of lemma 4. It can be replaced
by the following condition:

(v") ¢ < 4 and there is uy, € R such that for any compact interval I, which is either in
2
(-0, uy) or in (u,,) there exists L = L(I) = 0 such that |F(z,x,y)| = L|x — yl
(x,yel, t=0).

Under condition (v’) for all @ < b (see the proof of lemma 4 for the definition of @ and b)
one can choose suitable d e (a, b) and ¢ > 0 such that the intervals
IL=[a+ac/(l —c)—¢e,d+bc/(Ql-c)y+¢l, L=I[d+ac/(l1-¢c)—-¢gb+bc/(1~-c)+ ¢l

are disjoint, and therefore F is Lipschitzean at least on one of the intervals. Assume that Fis
Lipschitzean on I,. It is easy to see that if ¢ is large enough and y(¢) = d, then

) + Y oy~ in, Yy -inel,.
i=1 i=1
Consequently, we can do the same as in the proof of lemma 4 for sufficiently large ¢. The case,
when F'is Lipschitzean of /,, is analogous.
A similar remark is valid for lemma 4'.
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5. In [1] the first author considered the scalar neutral equation
(d/de)(x(t) — cx(t — 1)) = —ax"(¢) + ax"(t — 1) (t = 0), ®)

where [c¢| < 1,2 =0, r 2 0, y > 01is a quotient of positive odd integers, and conjectures that
each solution of (8) belonging to the space of continuously differentiable initial functions tends
to a finite limit as £ — «. On the basis of theorem 1 and the above remarks we can show the
convergence of the solutions of (8), wherever 0 < ¢ < 1.

6. Out technique does not work for neutral equations, where there are different measures of
delay on the left and right hand sides of the equation

(d7dn)(x(t) — ex(t — ) = —hx(t)) + h(x(t — q)) (t=0) C)]

where |c| < 1,7 > 0,¢ > 0, #: R — R is continuous and nondecreasing. Staffan’s transforma-
tion [7} y(¢) = x(¢) — cx(t — r) can be used to obtain

, -y N 2 R
y'@) = —hk yLoey@—in)+hl ) Tyt -q - tr)) (t=0). (10)

i=1 i=1
As far as we know analogous results to lemmas 1, 2, 3 and 4 are not available at the moment

for equations (9) and (10). Stability, boundedness and convergence of solutions of both equa-
tions (9) and (10) still are interesting and open problems.
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