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1. INTRODUCTION 

IN [7] STAFFANS demonstrates that a neutral functional differential equation (FDE) with stable 
D-operator often can be treated as a retarded FDE with infinite delay. The main purpose of this 
paper is to illustrate how Staffans’ ideas can be employed effectively to study the asymptotic 
behavior of solutions of certain nonlinear, nonautonomous neutral FDEs. In particular, we 
consider the scalar neutral equation 

where 

$ [x(t) - cx(t - r)] = F[t, X(f), x(t - r)](t 2 O), (1) 

(i) Olc< l,r>O, 

(ii) F: [O, 00) x R2 + R is continuous, 

(iii) x L y implies F(t, x, y) 5 0, 

(iv) x 5 y implies F(t, x, y) I 0, 

(v) for any compact interval I of R there exists L = L(Z) 2 0 such that 

IN, X, Y)I 5 L/x - ~1 (X, y E I, f L 0). 

The above assumptions imply that each constant function is a solution of (l), and, once the 
appropriate setting is established, we will prove that (i)-(v) are sufficient to guarantee that each 
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solution of (1) tends to a constant as I --t + 00. Among the consequences will be a partial answer 
to a conjecture in [I], but in a more general framework than considered in [5]. Likewise, the 
results given here are intended to supplement the convergence theorems in [4], where the setting 
was for autonomous retarded (c = 0) FDEs. So, for certain cases, our results generalize those 
given in [4]. 

It is standard to consider equation (1) in the state space C, (the space of continuous functions 
on [-T,O] with norm 1(411 = max_ r5 s s ,,~~(s)~). Existence, uniqueness and continuation of 
bounded solutions of (1) can be shown easily (see [2]). In Section 2 we prove the boundedness 
of solutions of (1) under conditions (i)-(v). Thus, we may assume that for any 4 E C, the solu- 
tion of (1) through (0, 4) exists on [0, 00). For our purpose the space 

C, = 
[ 
4 E C((-a,O], R): lim eY”f#+) = 0 

5-.--00 1 

with y > 0 such that ce ys < 1 and norm 1/&]], = sup550 eY’]$(s)l has more advantages. The 
initial function 4 E C, can be extended to (--a~, 0] such that 4 E C,. So, we assume that 4 E C., 
is given and consider a solution (1) through (0, 4) on the interval 10, 00). By introducing the 
natural transformation 

y(t) = x(t) - cx(t - f) (f E R), (2) 

the retarded equations with infinite delay 

v’(t) = F 
( 

t,y(t) + : c’u(t - if), i Py(t - ir) (t 2 0) (3) 
i=l i=l > 

can be obtained for y (see [6] and Section 3 of this paper for details). The initial function 
belonging to y at t = 0 given by (2) for c 2 0 is an element of C,. Since C, satisfies the basic 
local state space axioms of [3], existence, uniqueness and continuation of solutions of (3) also 
are valid under conditions (i)-(v). 

Therefore, a class of retarded equations with infinite delay arises from the investigation of 
solutions of neutral equations. However, this class of retarded equations is different from the 
types investigated in much of the literature, because we cannot find a separate ordinary part 
which dominates the functional part. Actually, both terms in the second and third variables of 
F on the right hand side of equation (3) are functional5 depending on the values of y in the 
intervals (-co, t]. Thus, to investigate asymptotic behavior of solutions for this class of 
retarded equations with infinite delay, some modifications and improvements are required on 
methods and results developed for those with a dominating ordinary part. 

In Section 2, first we introduce certain auxiliary functionals. By establishing monotonicity 
properties and limit behaviors of these functional along the solutions of (1) we conclude that the 
convergence of bounded solutions of (3) as t --t co implies that of each solution of (1) as t -+ co. 
A modification of the idea of [5] will lead to the asymptotic constancy of bounded solutions of 
(3). and consequently, to the asymptotic constancy of all solutions of (l), which is the main 
result of this paper. Therefore, as was mentioned, we can give a partial solution to a conjecture 
presented by the first author in [l]. 

In order not to hide the main idea behind general and technically complicated statements, we 
restrict our discussion to equation (1). In Section 3 possible extensions will be indicated. 
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2. THE MAIN RESULT 

Define the functionals V, W: C, -, R by 

v(4) = max _r;;50+(s)V (4(O) - co(--r))/(I - c) 
i 

, 

W(4) = min 
t 

min 4(s), (4(O) - cd(-r))/(l - c) 
I 

. 
-r1540 

Forafunctionx:(-co,a)+Randt<aletx,:(-co,01 -+ R be defined by x,(s) = (t + s), 
s I 0. 

Monotonicity properties of V and W along the solutions of (1) are given in the next lemma. 

LEMMA 1. If x is a solution of (1) on [0, /3), p > 0, then V(x,) is nonincreasing and W(x,) is 
nondecreasing on [0, /3). 

Proof. We show only the monotonicity of V, since the proof is similar for W. 
Let v(t) = V(x,), u,(t) = max-,,,,, x(t + s), am = (x(f) - cx(f - r))/(l - c). We examine 

three cases: 
case 1: ul(f) c u,(t), 

case 2: U,(f) > u,(f), 

case 3: ul(f) = u*(f). 

Case 1. Here D’u(f) = D’u,(f) * u,(f) < U,(f) implies x(f) < (x(f) - cx(f - r))/(l - c) and 
c f 0. Hence x(f) > x(f - r), from which one obtains o’uz(t) 5 0 by using (iii) and (1). 

Case 2. Now D’u(f) = D’ul(f) * u,(f) > u2(f) and x(f) = ul(f) are incompatible. x(f) < ui(t) 
implies D+u,(f) 5 0. 

Case 3. In this case D’u(f) I max(D+u,(f), D+u*(t)] * ul(t) = u2(t) gives x(t - r) cc u,(t) = 
(x(f) - cx(f - r))/(l - c), from which x(f) 1 x(f - r). Therefore, by (iv) and equation (l), 
D+u2(f) I 0. If c = 0 then z&f) = x(f) and by (iii), and (1) the equality x’(f) I 0 holds. 
Since obviously D+u,(f) I max(0, D’x(f)), we also have D+u,(f) I 0. Suppose c # 0. 
Clearly x(f) < u,(f) gives D+u,(f) I 0. Assume c # 0, x(t) = ul(f) = u2(f). Then x(f) = 
max_,,,,,x(f + s) = x(f + s) = x(f - r). In order to have D+u,(f) s 0 it is enough to show 
that D’x(f) I 0. Suppose the contrary, i.e. D’x(f) > 0. Then there is a sequence (h,] such that 
h, > 0, h, -+ O(n --* m), lim sup .,,(l/h,)(x(f + h,) - x(f)) > 0. Using that D+uz(f) I 0 and 
x(f - r) = max_,,,,,x(f + s), we have 

0 2 (1 - c)D+u2(f) 2 lim sup h,‘(x(f + h,) - x(f) + c(x(f - r) - x(f + h, - r))) 
n-m 

L lim suph;*(x(f + h,) - x(f)) > 0, 
n-m 

a contradiction. Thus D’x(f) I 0 and D+u,(f) I 0. 
So, D’v(f) 5 0 for all cases, which implies our statement. 
The following corollaries can be obtained from lemma 1. 
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COROLLARY 1. If x is a solution of (1) on [0, /3), p > 0, 

COROLLARY 2. Any constant solution of (1) is stable. 
Our next lemma gives some limit relations between 

minimum of solutions on intervals [t - 2r, t]. 

LEMMA 2. If x is a solution of (1) on (0, m), and 

then x is bounded. 

V(,u,), IV&), and the maximum and 

then 

u0 = lim V(.u,), w0 = lim IV&), 
r-m t-m 

f’; rmia$x. o .~(f + 4 = u. , lim max x(t + s) = wo. 
I-m -2rrsso 

Proof. The cases u. = w. and c = 0 are evident. Assume u. > w. and c # 0. Choose E > 0 
such that &c/(1 - c) < u. - wo. 

If the first limit does not exist or is not equal to uo, then there exists T 2 r such that 
W(x,) 2 w. - E for all t 2 T - r and max_2,,,,o x(T + s) < uo. By lemma 1, W(x,) I 
w. < u. d V(xT). Consequently, min_,, s,ox(T + s) I wo. So, there is toe[ T - r, T] with 
x(f,) 5 w,. Then 

V, 5 (x(t,) - cx(t, - r))/(l - c) 5 (w. - c(w(J - E))/(l - c) = wg + EC/( 1 - c) < u() 

is a contradiction. Therefore the first limit exists and equals uo. 
The proof of the second statement is similar. 

LEMMA 3. If x is a solution of (1) on [0, co), 01 E R and 

then 

lim(x(t) - cx(t - r))/(l - c) = cy, 
I-s 

iim x(t) = (Y. 
1-m 

Proof. It is enough to prove that u. = wo. Clearly, u. P (Y 1 w,. Assume u. > 01. Let 
0 < E < (u, - a)(1 - c)/(l + c). There is a sequence (t,) with t, -+ CD (n + ~3) and x(t,) 2 
u. - E, x(t, - r) I u. + E. Then (x(t,) - cx(t,) - r))/( 1 - c) 2 (u, - E - c(u, + e))/( 1 - c) = 
u. - ~(1 + c)/(l - c) > (Y, a contradiction. Likely, (Y > w. is also impossible. 

The proof is complete. 
Therefore, in order to get asymptotic constancy of solutions of (1) it is sufficient to show that 

any bounded solution of (3) belonging to an initial function in C, tends to a finite constant as 
t -, co. This will be done in the following lemma by using the idea of [5]. 

LEMMA 4. If y is a bounded solution of (3) through (0, 4), 4 E C, on [0, co), then y has a finite 
limit as t + co. 

Proof. From y. E C,, y > 0, and the boundedness of y on [0, a), the existence of K > 0 
follows such that ]]yc]], I K (t 2 0). Then 

u(t) + i c’u(t - ir) 
m 

_( K + c ciKeYir = K/(1 - cey’) (t L 0) 

i=l i=l 
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and 
m 

c ci- ‘y(t - ir) 5 Ke7’/( 1 - cey’) (f 2 O), 
i=l 

where, and in the sequel, we mean 1 for 0’. 
Suppose lim,,, y(t) does not exist, that is 

a dG’ lim inf y(t) < lim sup y(t) dZf b. 
I-co t-m 

Let a’ E (a, b) and L = L([-M, MI), where A4 = Key’/(l - cey’). Define E > 0 such that 

b + E + *(d - b - c) exp(-Lr/(l - c)) < b. 

Let t, 1 0 be given such that t 2 t, implies y(t) 5 b + E. Choose fz 2 t, such that y(tz) = dand 

2LM(l - c) 
.I ,z( 

m cey’ t(’ ‘I)“] dt < i(b + E - d) exp(-Lr/(l - c)), 
) - 

where [ -1 denotes the integer part. 
Let 

v(t) = max y(t) (t r 22). 
QSSZGf 

We are going to show that 

D’v(t) I Lct(‘-Q”l(b + E - v(t)) + 2LM(l - c)(ceY’)t(‘-‘l)“I. (4) 

In both the case where y(t) < u(t) and the case where y(t) = v(t) and y’(t) I 0 we have 
D’v(t) 5 0. Since the right hand side of (4) is nonnegative we obtain (4) for both cases. Now 
assume y(t) = u(t) and y’(f) > 0. Then by assumption (iv) 

y(t) + i c’y(t - ir) < i c’-‘y(t - if). 
i=l i=l 

So, from condition (v) one has 

y’(t) 5 L ; (P - c’)(y(t - ir) - y(t)). 
i= I 

Now, using that y(t) = v(t) implies y(t) L y(t - ir) for i = 1, . . . , [(t - tz)/r], y(t) I b + E on 
[t,, a~), y(t - ir) 5 Keiy’ for t 2 0, we conclude that 

y’(t) I L i (ci-’ - c’)(y(t - ir) - y(t)) 
[(I-tz)/r]+l 

[v-~,v~l 

I L c (2-1 - c’)(b + & - y(t)) + L 
[(t-rz)/r]+l 

,,_,?+,@’ - c’)(Ke+ + K) 

-c Lc~(‘-‘~)‘~~(~ + c - y(r)) + 2LM(l - c)(ceY’)t(f-‘~)‘rl. - 

Since y(t) = u(t) together with y’(t) > 0 implies D’u(t) = y’(t), we obtain (4) for all t h t2. 
From well-known differential inequalities (see e.g. [6, theorem 1.10.2]), it follows that 
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u(t) I o(t) on [tz, m), where o(r) is the unique solution of the initial value problem 

O’(f) = Lc r(r-r3’r1(b + E o(t)) + 2LM(l - c)(ce7’)[(‘-‘i)“1) a.e. on [tz, a) 

a(tJ = d. 

That is, 

s f 2LM( 1 - c)(c~~‘)[(~-‘~)“~ exp 

5 I:E + (d - b - 

< b + E + (d - b - ~)exp(-Lr/(l - c)) + +(b + E - d)exp(-Lr/(l - c)) 

<b (f 2: f*). 

Hence b = lim sup,,,y(t) I lim supr_._ o(t) < b follows, a contradiction. This proof is 
complete. 

Out main result below now follows readily from the previous lemmas and the fact that we 
have set y(t) = x(t) - cx(t - r). 

THEOREM 1. Under conditions (i)-(v) each solution of (1) tends to a finite limit as t + co. 

Example. Consider the equation. 

(d/dt)(x(r) - cx(t - r)) = (1 + sin I)(-h(x(t)) + h(x(t - r))), (5) 

where 0 5 c < 1, r > 0, h : R + R is nondecreasing and locally Lipschitzean. By theorem 1, 
each solution of (5) tends to a finite constant as t + co. 

3. REMARKS 

1. The ideas of lemmas 1, 2 and 3 also work for more general equations than (1). For 
example, consider the scalar neutral equation 

( s 

0 

(d/d?) x(t) - c x(t + s)dv(s)) = +x(r),jIrx(r + S)dV(S)) (t 5: 0), (6) 
-r 

where conditions (i)-(v) also are assumed, Y : [--r, 0] -+ R is nondecreasing and j!,dv = 1. 
If we define the functionals by 

then lemmas 1, 2 and 3 are valid for equation (6). 
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Let y > 0 be defined such that 

0 

c ee7’ dv(s) < 1. 
-r 

Extend v to (-co, 0] with dv(s) = 0 for s < --r. Let P = 6 - cv, where 6(s) = 0 for s < 0, 
6(O) = 1. From Staffans’ result [7] it follows that the convolution operator ,u*, defined by 

0 

p * cb(u) = 

s 
44~ + d &.44 (u 5 O), 

-co 

maps C, continuously into C,, its inverse P -‘* also exists and maps C, continuously into itself, 
and is given by 

P 
-1 * = 6* + cv* + c2v*v* + c3v*v*v* + ..*. 

In the same way as in Section 1, the solution x of (6) can be extended to (-00, O] with x0 E C,. 
By using the transformation Y = p *x, that is Y(l) = x(t) - c &x(r + s) dv(s), we obtain 
x = ,u-’ *y and 

y’(t) = F 
( 

t, (P-’ *y,)(O), 
s 

0 

_r(~ - ’ * Y,)(S) dv(4 
> 

(t 2 0). (7) 

If Y, E C, and y is a bounded solution of (7) on [0, 00) then there is K > 0 with 11 yt& s K, 
t 1 0. In addition, 

IV *y,)(O)1 = lY(0 + c(v *y,)(O) + c2(v2 *y,)(O) + ***I 

and 
I K(l + q + q2 + a..) = K/(1 - q) 

IS 

0 

_!“-’ *y,)(s) = I( v *y,)(O) + c(v2 *y,)(O) + c2(v3 *y,)(O) + * * *I 

I K(q + q2 + q3 + ..a) = Kq/(l - q), 

where q = c jfr e- yr dv(s) < 1, vt *YI = v *y,, vk’r *y, = v * (vk *Y,). It also follows that 

s 

0 
(fi-’ *y,)(s) dv(s) - (/J-’ *y,)(O) = i (ci-’ - c’)((v’*Y,)(O) - y(t)). 

--I i= 1 

Therefore the symptotic constancy of bounded solutions of (7) can be obtained analogously 
to that of (3). 

2. We employ the phase space C, only for the purpose of extending an initial function of 
4 E C, to (-03,0] such that the natural transformation (2) is invertible and the equation (1) can 
be related to the retarded equation (3) with infinite delay. Such a technical procedure can be 
avoided if we restrict our discussion of asymptotic behavior of solutions to a compact invariant 
subset Q of C,, invariance means that any solution in R can be uniquely extended to 
(-co, +a). For example, for any 4 E C,, the orbit of (1) through (0, I#I) is relatively compact by 
corollary 1, and thus the o-limit set o(4), is compact and invariant. If I,U E o(4), we can find 
a bounded continuous function x : (-co, +co) --) R with x0 = w and such that (1) holds for all 
t E (-00, +a). Evidently, the transformation y(t) = x(t) - cx(t - r) is invertible with x(t) = 
y(t) + CT=, c’y(t - ir), and y(t) satisfies (3). Therefore y(t) has a finite limit by lemma 4, 
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5. In [l] the first author considered the scalar neutral equation 

(d/dt)(x(!) - cx(t - r)) = -ax-‘(t) + axY(t - r) (f 2 O), (8) 

where ICI < 1, a 2 0, r L 0, y > 0 is a quotient of positive odd integers, and conjectures that 
each solution of (8) belonging to the space of continuously differentiable initial functions tends 
to a finite limit as t -+ co. On the basis of theorem 1 and the above remarks we can show the 
convergence of the solutions of (S), wherever 0 I c < +. 

6. Out technique does not work for neutral equations, where there are different measures of 
delay on the left and right hand sides of the equation 

(d/dt)(x(t) - cx(t - r)) = -h(x(t)) + h(x(t - q)) (f 2 0) (9) 

wherelcl < l,r>O,q>O,h:R + R is continuous and nondecreasing. Staffan’s transforma- 
tion [7] y(t) = x(t) - cx(t - r) can be used to obtain 

f c’-‘y([ - q _ ir) (f 2 0). (10) 

i= I 

As far as we know analogous results to lemmas 1, 2, 3 and 4 are not available at the moment 
for equations (9) and (10). Stability, boundedness and convergence of solutions of both equa- 
tions (9) and (10) still are interesting and open problems. 
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