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On the boundedness of solutions of nonautonomous
differential equations
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Dedicated to L. Pintér on his 60th birthday

1. Introduction

In the study of existence of periodic solutions and almost periodic solutions as
well as behavior of limiting sets of solutions of ordinary differential equations, the
uniform boundedness and uniform ultimate boundedness of solutions are frequently
needed [1—4, 9]. These properties of solutions can be regarded as either the instability
of infinity or a special case of some kind of stability of a set. Therefore, there exists
a close relation between Lyapunov’s direct method and the boundedness of solutions.
A typical result showing this relation is Theorem 10.4 in [3]. In this theorem the
uniform ultimate boundedness is guaranteed by the existence of an appropriate
Lyapunov function having a negative definite derivative along the solutions. How-
ever, in practiceitis very difficult to construct sucha Lyapunov function. For example,
for mechanical systems the total mechanical energy, which is a typical Lyapunov
function, never has a negative definite derivative along the motions with respect to
the generalized coordinates.

The purpose of this paper is to study the boundedness and ultimate boundedness
of solutions of nonautonomous differential equations by Lyapunov’s direct method
when the derivative of the Lyapunov function along the solutions is only semidefinite.
The results generalize V. M. MATROSOV’s theorem [5] on the asymptotic stability
to the boundedness of solutions. An application is given to the boundedness of the
motions of a holonomic scleronomic mechanical system of n degrees of freedom
bei1‘1g under the action of potential, dissipative and gyroscopic forces.
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268 W. Jianhong, L. Hatvani

2. Notations and definitions

Consider the system
2.1 x =X, x),

where (z, x)ERTXR", R*=[0, «) and X: R"XR"-~R" is continuous. Throughout
this paper, for simplicity, we assume that for any (7, x)é R* X R" there exists a
unique solution x(¢; ¢y, x,) of (2.1) through (%), x,) defined for all 1=¢,.

Definition 2.1 [3]. A solution x(#;%,x,) of (2.1) is bounded, if

sup |x(t; ty> Xo)l<oo.
t=ty

The solutions of (2.1) are uniformly bounded (U.B.) if for every a=0 there cxists
a B(x)=0 such that [#,=0, |xo|<a, t=1,] imply |x(z; t,, xo)|<pB ().

The solutions of (2.1) are equiultimately bounded (E.U.B.) for some bound B
if for every a=>0 and #=0 there exists a T'(ty, ®)=>0 such that [|x)|<a, t=t,+
+T'(ty, )] imply |x(2; o, xo)| <B.

The solutions of (2.1) are uniformly ultimately bounded (U.U.B.) for some bound
B if for every a>0 there exists a T'(x)>0 such that [{,=0, |x,|<a, =)+ T(x)]
imply |x(z; ty, Xo)|<B.

By a pseudo wedge W we mean a continuous and strictly increasing function
Ww: Rt>R* with W(r)=0 if r=0. A pseudo wedge W is called unbounded if
rlirg W(r)=+ oo

Denote by [a], and [a].. the positive and negative part of the real number a,
respectively, that is, [a],=max {a, 0}, [a]-=max {—a, 0}.

Definition 2.2 [5]. A measurable function A: R*-~R* is said to be integrally
positive if Jf A(t)dt=c holds on every set J =m[;)1 [@w> b,] such that a,<b,=a,4,
and b,—a,=6=>0 (m=1,2,...) for a constant §=0.

Definition 2.3 [7]. A measurable function 4: R*~R* is said to be weakly
integrally positive if for every =0, A=0 and for every set J= G [aw, D] Wwith
O+ 0=bp=a1,<b,+4 (m=1,2,...) the relation Jfl(t)dt= oomzzlds.

Lemma 2.1. If a measurable function A: R* ~R* is integrally positive, then
for every a=>0 and 6=0 there exists a positive integer K(a, 6) such that for every

K
set J= U l[ay, bs] with a,<a,+0=b,=a,+1 for 1=m=K-—1, we have
m=1
[ A@®)ydi=a.
J
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Nonautonomous differential equations 269"

Proof. It is easy to see that A is integrally positive if and only if for every §=0

the inequality
t}-o

(2.2) lim inf [ As)ds =0
t

holds. Consequently, for any given 6=>0 there are T=T(6)>0 and u(6)=0
such that t=T(6) implies
t+d
[ () ds = (o).
t
Let «a=>0 and 6=0 be given, and define K(o, 8)=[T(5)/d]+ 1+ [ot/u(d)]+1,
where [a] denotes the integer part of ac R, that is, [¢]=max {z: z is an integer with
z=a}. Then the number K(e, 6) has the property mentioned in the assertion.
The following assertion can be easily proved by making use of (2.2).

Lemma 2.2. If a measurable function i: R*—>R* is integrally positive, then

to+T

2.3) lim [ A=c
L)

uniformly with respect to 1, R,

Remark 2.1, The property of weak integral positivity and property (2.3) are
independent of one another. E.g. A(t)=1/(1+¢) is weakly integrally positive, but
it does not satisfy (2.3) and so it is not integrally positive. On the other hand, weak
integral positivity and (2.3) together do not imply integral positivity. E.g., the funciion

X /149 n=t=n+l1/2
®=1 n1/2 <t <n+tl

is weakly integrally positive and satisfy (2.3) but it is not integrally positive.
With a continuous function 7: R*XR"—~R we associate the function

Voay(t, x) = Timsup (1/m) {7 (¢+h, x+hX(2, %)=V (1, %)}

which called the derivative of ¥ with respect to (2.1).
It can be proved (see [3], p. 3) that if ¥ is locally Lipschitz, then for an arbitrary
solution x(¢) of (2.1) we have

V (tas %)=V (ty, X(8y)) = ftn V(t, x(®) dt, (4, tzek+).
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270 W. Jianhong, L. Halvani

3. The theorems and their proofs

Theorem 3.1. Suppose that there exist nonnegative constants B and D, non-
negative locally Lipschitz functions V(t, x), P(t, x) and continuous K(t, x) defined for
t=0, |x|=B satisfying the following conditions:

) W (x)=V(t, x)=W,(x]), where W, and W, are unbounded pseudo wedges;

(ii) the derivative of V with respect to (2.1) satisfies the inequality

(3.1 Veay(t,x) =—K(t,x) for t=0, |x|=B;

(i) for each M=>B there are k=k(M)=0 and H=H(M)=0 such that
[t=0, B=|x|=M, P(t,x)=H] imply K(t, x)=k;

(iv) for each M=B there exists an L(M)=>0 such that [t=0, Bs|x|=M,
H(M)=P(t, x)=2HM)] imply Pys(t, x)=L(M);

(v) for each M>B there is a T(M)=>0 such that for any solution x(t) of (2.1)
with B=|x(t)|=M and P(t,x())=2H(M) for tyst=iy+T(M) there exists
$€[ty, to+ T(M)] with |x(s)|<D.

Then the solutions of (2.1) are U.B. and U.U.B.

Proof. Forany a=0, define f(x)=W,"(W,(max {B, a})). It is easy to prove
that [£,=0, |xo| =] imply |x(z; ¢, Xo)|=p(x) for t=t,. Therefore, the solutions
of (2.1) are U.B. Throughout the remainder of this proof we use the notations x(¢)=
=x(t; ty, X0), V)=V (t, x(t)) and V(t)=V1(t, x(2)).

To prove the uniform ultimate boundedness, we consider the following two
cases:

(a) there exists a #,=1#, with |x(f)|=B;

(b) |x(#)|=B for all t=1,.

In case (a) |x(®)|=p(B) for t=t,.

In case (b) we have V(¢)=—K(t, x(¢)) for all ¢t=4,. By (iii) there exist k=
=k(f(®))=0 and H=H(B(x))>0 such that P(f, x(t))=H implies K(t, x(1))=k.
Let #=1, be fixed, and choose a constant S=S(x)>W;(B(®))/k- Then by (3.1)
the nonnegativeness of V¥ implies the existence of a #€[f, i+S(x)] such that
P(t3, x(t))<H. By (v), there exists T=T(B(®))=>0 such that if P(¢, x(¢))<2H
for t€[ty, t;+ 77, then there is an S€[ty, t;+T] with |x(s)]<D, which implies
[x(@®)|<pB(D) for t=t3+ T, especially, for t=i+S+T.

Therefore, only two cases may occur:

(b)) P(t, x(£))<2H for all t€[ts, t5-+T1.

In this case, [x(¢)|<p(D) for t=i+T+S.

(by) there exists 1,€[t5, ts+T] With P(t,, x(19))=2H.

In this case, there are f5, fg such that fy<ts<tg=t,, P(l5, x(ts))=H, P(ts, x(ts))=

All rights reserved @ Bolyai Institute, University of Szeged



Nonautonomous differential equations 271

=2H and H<P(t,x())<2H for ty<t<ts. By (iv), we get te—ts=H/L(B(2)).
On the other hand, by V(#)=—K(t, x(¢))=—k for t€[t;, ;] we obtain

(3-2) V(t) =V (1) —kH/L(B()).

Since in case (b) V()=—K(t, x(t))=0 for all t=t,, we get V(i+S+ T")-'é
=V({)—kH/L(B(x)). Let i=t,+m(S+T), where m is a nonnegative integer.
Then from the argument above we get either

(Cm) bx(#)] = max {B(B), B(D)} for ¢= ty+(m+1)(S+T),

or
(d.) V(to+(m+1)(S+T)) =V (to+m(S+T))—kH/L(B(«)).
Choose a positive integer N=N(x) such that

(3.3) N@KH/L(p(@) > W(B(@).

Then by the nonnegativeness of ¥, (d,,) holds for at most m=0, 1, ...; N—1, and
thus |x(z)|<max {#(B), B(D)} for t=ty+N(S+T). This completes the proof.

Remark 3.1. Using the same argument as one above, the comparison method
and Lemma 2.1, we can prove the following assertion:

If conditions (i), (iii)—(v) of Theorem 3.1 are satisfied and if for each M=>B
there exists a weakly integrally positive function 4,,: R*—R™ such that

Veay(t, x) = =l (DKt x)+F(t, V(t, x)) for t=0

and B=|x|=M, where F: R*XR*—~R* is continuous, the solutions of z=F(t, 2)

are yniformly bounded, and f sup F(t,z)dt<o for r=0, then the solutions
0

O=z=r
of (2,1) are U.B. and E.U.B. If, in addition, 4, is integrally positive, then the solu-
tions of (2.1) are U.B. and U.U.B.

Remark 3.2, If conditions (i), (iii) and (v) of Theorem 3.1 are satisfied and if

@) Vet )=—A(OK(t, x)+F (1, V(t,%)) for t=0 and |x|=B, where
A: RT >Rt is measurable and satisfies condition (2.3), and F is of the same kind
as in Remark 3.1;

(b) for any M >0 thereexistsa p=u(M)=>0 suchthat [B=|x|=M, HM)=
=P(t, x)=2H(M)] imply
Ven(t, x) = =Pyt x)+F(t, V(1 %),
then the solutions of (2.1) are U.B, and U.U.B,

5
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272 W. Jianhong, L. Hatvani

To prove this remark it is sufficient to replace (3.2) and (3.3) in the proof of
Theorem 3.1 by

V(te) = V (ts)~ (B @) H (B )+ f.max {F(t, 2): 0=z = W(B()}at
and ’

Nu(B@)H(B@) > H(B@)+ [ max{(t,2): 0= 2= H(B()) db
respectively. '

Recmark 3.3. Condition (iv) in Theorem 3.1 can be weakened as follows: for
any M=B there exists a continuous function L;: R*-R* such that f Ly is
uniformly continuous on [0, <) and either ’
[Peay(t, %)y = Ly() for t=0, B=|x|=M and H(M)= P(t,x)=2H(M),
or
[Pyt )]- = Ly( for t=0, B=|x|]=M and H(M)= P(t,x)=2H(M),

Remark 3.4. Condition (i) in Theorem 3.1 can be replaced by 0=V (¢, x)=
=W,(|x|) if the solutions of (2.1) are U.B.

Example 3.1. Consider a Liénard equation with forcing term
3.9 X4+f()x+g(t, x) =e(1),
where f(x), g(t, x), dg(t, x)/0t and e(t) are continuous for (¢, x)éR*XR and
f le(s)|ds<-oo. Besides, we assume that there exist unbounded pseudo wedges
0

W;, W,, a continuous W;: R*—>R* with W;(r)>0 for r>0 and an integrally
positive function A: R*—R* such that

W(xl) = [ g(t, x) dx = W(lx]),
o

g(t, X)F(x)— [ (9g(t, /o) dr = 2O Wi(|x]),
o

where F(x)= f f(s)ds. .Obviously, (3.4) is equivalent to
o

(3.5) ¥=y—F(x), y=—g(tx)+e(®)."
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X o
Let V(4, x,9)=[y+2 [ g(t,r)dr]"*+ [ le(s)lds, then
0 4

DA+ 2W(IXDI2 =V (1, x, y) = [+ 20 (IxDFV2 + fm le(s)] ds
Viasy(t: %, ) = = AWy (Ix) ¥+ 20 (D],

Let K(t, x, p)=Ws(x)ly*+2W,(xD1-'7, P(t, x,p)=|xl, B=1 and H=1. Then
for each M=>1 and for t=0, 1=|x|+|y|=M and |x|=1, we have K(,x, )=
=min {W3(r): 1=r=M} (M2+2W,(M))~"? Therefore, conditions (@i)—(iv) of
Theorem 3.1 hold (see also Remark 3.1). Now we check condition (v).

Let E=max {|F(x)|+1: [x|=2}, D=E+2, and for M>1 define T(M)=
=2M+1, Suppose that (x(¢), y(¢)) is a solution of (3.5) with 1=|x(?)|+|y(t)|=M
and |x(¢)|=2 for t€[ty, ty+T(M)]. If |x(t)|+|y(@)|=E+2 for all t€[ty, t,+ T(M)],
then |y(#)| = E, e.g. y(t)=E, and consequently % (¢)=y (t)— F(x(¢)) = E— fax F(x)=
=1. Hence we obtain the inequality 2M le(to+ T(M))—x(t)|=T(M)=2M+1,
which is a contradiction. Therefore, there is an s€[f, t+T(M)] with |x(s)|+
+|y(s)|<D=E+2, i.e. condition (v) in Theorem 3.1 holds.

Consequently, under our conditions the solutions of (3.5) are U.B. and U.U.B.

Notice that if P(¢, x)=|x|, then condition (iv) in Theorem 3.1 can be dropped.
(Indeed, if condition (i}—(iii), (y) are satisfied for P(t, x)=|x|, then all the con-
ditions of the theorem are satisfied for the new auxiliary function B(z, x)=V(, x).
If, in addition, H in (iii) is constant, then (v) obviously holds. This special case initi-
ates the following generalization of T. YosHIZAWA’s theorem ([3], Theorem 10.4):

Theorem 3.2. Suppose that there exist a constant B=O0, a locally Lipschitz
function V(t,x) and a continuous function K(t x) defined for t=0 and |x|=B

satisfying the following conditions:
@) W(x)=V(, x)=W;(|x]), where W, and W, are unbounded pseudo wedges;
(i) Vio,y(® x)S—A(t)K(t x) for t=0 and |x|=B, where i: R*->R* is

measurable with 11m f A(s)ds=oo for any t,=0;

(iii) for each M >B there exists k(M)=0 such that B=|x|=M implies
K@, x)=k(M).

Then the solutions of (2.1) are U.B. and E.U.B. If in addztzon, A satisfies condition
(2.3), then the solutions of (2.1) are U.B. and U.U.B.

Proof. For any a>0, define .f(x)=W,"*(W;(max {B, a}). Let x(t; t,, x,) be
a solution of (2.1) with [xo|<a. Then |x(t; 1), xo)l<p(x) for all z=¢,, ie. the
solutions are U.B. { C o

5%
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For a given #=0 choose T(to, oc)>0 such that

\ [ )
tob Tltgro) v ’

A(s) ds =W (p (oc)) k(B (oc))
S S T S O ST R

It is easy to prove that |x(¢; ,, xo)|<f(B) for all t2t0+T(t0, o).
The second conclusion can beé proved similarly. - ‘

The following theorem is a generahz'ttmn of V M. MATRosqv s stabilily theorem
[5] to the boundedness of solutlons ;|

Theorem 3.3. Suppose that there exist a constant: BZ!O and nonnegative lo-
cally Lipschitz functions V(¢ x), W, x), P(t,x), a continuous funct’ion I'(¢, u) defined
for =0, |x|=B, u=z0 and such that .

() W(xD=V(E, x)=W,(|xl), where W, and W,, are ynbotinded psetido wedges;

(i) for every M=>B there'is a measuiable function At RYRY such that

Vet x) S-—)tM(t)P(t, x)+F(t V(t x)) for 120 and B = Ix[ =M,

where - : SR A
(@) Ay is weakly integr ally posztwe,

(b) the soluttons of the equation = F(t, 2) are U. B und f [ sup F(t,z)]dt<

fo;eoeryr>0 . L
(iii) for every M=B there exists -a continuous function Ly: Rt>R*

such that f Ly, is unzformly continuous on R+ and ezther [P(2 1)(t x)]+§LM(t)

or [P, 1)(t x)]_éLM(t) Jor tZO B=|x|=M;

(iv) for.every M=B there exists a constant A(M ) =0 such that |W (¢, x)|=
=AM) for t=0 and B=|x|=M; S .

(v) there exists a constant D=B and for any M*B. there ext.s'ts a continuous
Sfunction Wy: Rt >R+ with W;,(r)>0 for r=D such that ¢ . ~ ‘i |

max (P(t, %), W), x)|}2qu[) for t=0 and D= =M.

|
Then the solutions of (2.1) are U. B. and E.U.B. If in addttzon, lM(t) is tntegrally
positive, then the solutions of (2.1)-aré U.B. andU.U.B. + * .»

Proof. First. we show that under, the assumptlons of the theoi'em condltlon
(v) in Theorem 3.1 is satisfied. ** .

For any M=D, choose H(M)>0 ‘such that 2% oc(M)— mln Ws(r)
and define T(M)=[24(M)+1]{a> Let.x(¢) be a solution of (2.1) with- B$ |x (t)] =M
and P(t, x(¢))=2H(M) for te[ty, to-+T(M)]. If |x(2)l=D for.alt 1G[ty, fo+ T(M)]
then according to condition (v) we get [Weyy(t x(2))|=«, hence, 24(M)=
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[ (5+ (M), x(ty+ T (M) =W (10, x(to))[zocT(M) 24(M)+1, which s a ‘contra:
diction. Therefore, condition (v) of Theorem 3.1 holds. ;
An application’of Theorem' 31 Remaik 3.1 and Remark 3.3 completes the

proof. Cyoea A ' s

'

Remark 3.5. Condition (v) of ‘Them;em 3.3 can be weakened by askingthere
is a constdnt D=R such that for every M>D there are By,(M)=0 and a con-
tinuous function pu,: R*—~R* with property (2. 3) and such that [¢=0, D<[v[SM
P(t, x)=B,] imply Wyt x)|=u(0).

An application of this theorem to a holonomic scleronomic mechanical system
will be given: in Section 4,

As we have seen so far, the key step in the application of Theorem 3.1 is to
check condition (v). Now we establish a sufficient condition for this property by
Lyapunov’s direct method.

\

Lemma 3.1. Suppose that there exist Hy=>0, D>B and a locally Lipschitz
function Q(t, x) defined on the set' {(t,x): t=0, |x|=D, P(t, x)=2H,} such that
(i) for each M =D there are continuous functions y, g: Rt >R and a number

t

He(0, Hy) such that y has property (2.3), the function f [g(s)], ds is bounded on R,

(1}
and [t=0, D=|x|=M, P(t, x)=2H] imply Q. x)=—y()+g({);
(i) for each M=D: there exists L(M)=>0 with |Q(t, x)|=L(M) for t=0
and D=|x|=M.
Then condztzon (v) of Theorem 3.1 holds with these numbers H and D.

Proof. Let M>D be given and let a solution x(t) of (2.1) satisfy B=|x(t)|=M
and P(t, x(t))=2H (M ) for fE[to, ty+T(M)], where T(M)=0 is a tonstant such

that
to+T(M)

[ 1) ds=>2L(M)+ j [g(s)]. ds for all £, =0.
t 0 '
If |x(¢)|=D for t€[t,, t0+T(M), then’We‘get

ty+T(M) oo,
—L(M) = Q(to+T(M), x(to+T(M)))sL(M)— [ y@®dt+ [ [g@)]. ds

to
’

which yields a contradiction to 'the choice of T(M). Consequently, there is s€
€[tys. o+ T(M)] with, |x(s)|<D, and the proof is complete. .

Example 3.2, Consider the equation

A}

(3.6) G R a(DR L) = e(d)
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and suppose that the continuous functions a, e: R*—+R, f: R—R salisfy the
following conditions:

(i) a(?)=0 for t€R*, ais weakly integrally positive, and there exist constant
to-¢

@>0, T=>0 such that [t,=0, r=T] imply (1/¢) [ a(s)ds=d;
1
(ii) e€L1[0, =); C
(iii) there is an ry>0 such that xf(x)=0, |f(x)|=0 provided |x|>r,, and

F@= [ fs)ds—os, as |x|~o

Tl(l)en the solutions of equation (3.6) and their derivatives are U.B. and E.U.B.
If, in addition, the function a(¢) is integrally positive, then the solutions and their
derivatives are U.B. and U.U.B.

Equation (3.6) is equivalent to the system

3.7 %=y, y==f(x)—a@y+te.

Define V (2, x, y)=[y*+2F(x)]"*+ f le(s)|ds. Then
t

Van(t x, y) = —a@)y*[y*+2F (x)] 2.
Choose K(t, x, y)=y*[y*+2F(x)]~'2, P(t, x, y)=y*. Then

[Py (t, %, Mo = [-fX)y—a@®y2+e®yls = |f G|V +]e@)]|yl.

Let B>0 be fixed arbitrarily. For M>B let Ky=max {| f(x)|: 0=|x|=M}
and suppose B=|x|+|y|=M. Then [Ppq({ x,)].=[Ky+le(®)]M and

t
f (Kpr+ le($)]) M ds is uniformly continuous in R*. Consequently, conditions (i)—(iv)
(V]
of Theorem 3.1 (see also Remark 3.3) are met with arbitrary H=0, and the solutions
are U.B.
Now define D=ry+1, Hy=1/2, and

y if x=r,
Q(t,x’y)_‘{_y i.f x_s_—‘ro,
whose derivative is
—f(X)—a@)y+e(® if x=r,

Q(a.?)(t, X, y) = { f(x)—l-a(t)y'—e(t) if x= —ro.

For a given M=D introduce the notation m(M)=min {| f(x)|: ro=|x|=M}. By
the conditions, m(M)>0, and [t=0, D=|x|+|y|=M, y*=2H] imply the ine-
quality

Oe.o(t X, y) = —m(M)+a()[2H]"2+ ().
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. (1 1 R '

Let H—min {E M)+, —2-}, 2 ()y=m (M)~ QH)"a(r) and g(t)=le(t).
Then Q(a..,)(t, x, y)=—y(t)+g() and for sufficiently large T=0,

tg+T fo+T

[ v(@dt=m@NOT-QHM" [ a(t) dt = m(M)d/(@+1)T~eo

fo % '
as T-oo uniformly with respect to #,=0, and so all the conditions of Lemma 3.1
are satisfied. '

This completes the proof,

Consider now the system
(3.8) x=X(tx9, y=Y(x,»)

where x€R™, peR*; X: R¥XR"R™ and Y: Rt XR"+kRF are continuous,
The following theorem shows that the function Q in Lemma 3.1 can be constructed

from the reduced subsystem
(3.9) y= Y(10, y)'

Theorem 3.4. Suppose that

() There exist constants B, H=0 and a locally Lipschitz function V(t, x, y)
defined for t=0 and |x|+|y|=B such that

(@ W (x|+1y)=V(, x, »)=W;(x|+|y]), where W, and W, are unbounded
pseudo wedges,

(b) Visgy(t, %, ))=—A(t)K(%,y) for t=0 and |x|+|y|=B, where A(f) is
weakly integrally positive, K(x,y)=0 for |x|+|y|=B, and for any M=>B there
exists k(M)=0 such that K(x, y)=k(M) for H=|x|, B=|x|+|y|=M;

(ii) there exist a constant B;>0, a continuous N: R*—~R* with N(s)=0 for
s=B, and a locally Lipschitz function Q(t, y) defined for t=0 and |y|=B, such that

(©) 0=0(t, y)=Wy(|y|), where W} is a pseudo wedge;

(@) Owoy(t, )=—Wi(ly]) for |y|=B,, where W, is a pseudo wedge,

© 106 y)— (¢ =N (max {Iyl, 7Yy —71;

(iii) for any M=0 there exists L(M)=0 such that |X(t, x, y)|=L(M) if
x|+ [yl=M; -

(iv) there exist contimous P, B: RY*>R* with Pl(.s')>0 for s=B, such that
1Y(t, %, )~ ¥ (1, 0, D= B(y) B3

W) lim ) (BEONE)=o.

Then the solutions of (3.8) are U.B. and E.U.B. If, in addition, 4 is integrally positive,
then the solutions of (3.8) are U.B. and U.U.B, ,

Proof.. Obviously, (1)—(1v) of Theorem 3.1 hold with P(#, x, y)=|x|.
Choose D=0 su¢h that D—2H=B,, W;(r)/N(r)B(r)=max {B(5): |s]=2H}+1

All rights reserved @ Bolyai Institute, University of Szeged



278 W. Jianhong, L. Hatvani

for s=D—2H. Then if D=|x|+|y|=M, |x|=2H, then |y|=D—2H=B;, and
thus

Oe.e)(ts V) = Qny(t M)+ N(YDIY(, x, y)—Y(1, 0, y)| = ~W(Iy)+

+ NQDEWDAD = ~NIDED [ Bd | -

—N(y)R(y)) = —inl {N(F)B(r): B, = r= M}.

Therefore, condition (v) of Theorem 3.1 holds by Lemma 3.1, and so the proof is
complete.

Example 3.3. Consider now the system
(3.10) % = fi(t, X)+by, y = folt, x)+dy+e(D),

where f1, LECR*TXR, R) with f(¢,0)=0, f,(z,0)=0, e(¢) is a bounded con-
tinuous function on R* with e€L'[0, «), b, d arc constants with db0. Besides,
we assume

@) sup {| f1(t, )|+ @, x)|: t=0, |x|=M}<oo forany M=>0;

(i) [dfi(t, x)—bfy(2, x)]/x=a(x)=0 for t=0 and x>0, where o is continuous

and I}Iigloo fxoc(r)rdr=oo;
@) [AQE x)+dx][bfs(t, x)—df1(t, x)]— ofx [(@afs(2, r)10f)— (b2, r)[08)] dr=

=A(¢)B(x), where A(?) is integrally positive, f§ is continuous with f(x)=0 if x40.
Under these conditions the solutions of (3.10) are U.B. and U.U.B.
Indeed, let

V(t, %, y) = [(dx—by)*+2 f [df,(¢, ) —bfy(t, ] dr]*+b f le(s)| ds.
(V] t

Then -
V(3.10)(t: X, J’) =
~A6 D= NG D+ + [ [ag A Db 0] ar
[(@x—byy2+2 fx [df, (1, )—bfy(t, )] ar]™®
0
=—-A(HK(x, y),
where

K, y) = () [(dx—by)“+2su13 [ 1d(t, —bfat, ] dr] 2.
) o =0
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It is eéasy to prove that for any M=0 there exists k=k(M)=0 such that
[Ix|+|y|=M, |x|=H] imply K(x,y)=k(M). Therefore, (i) of Theorem 3.4 holds.
l On the other hand, for the subsystem

@3.11) § = dy+e(t)
and for Q(¢, y)=y?/2, N(r)=r, we have
Qe (b J’)édlyl[ller(l/d)Stglg le®I] = (1/2) dy* for |y] E—(Z/d)iglgle(l)l-

Therefore, after making the choice B (r)=1, B(r)=sup {| fz(s, x)|: 1=0, |x|=r}
all the conditions of Theorem 3.4 are met, and our assertion is irue.

Theorem 3.5. For system (3.8), suppose that

(i) there exist continuous functions P, P,: R*—~R* with PF(s)=0 for s=0
such that |Y (8, x, y)—Y (1, 0, y)|=R(Iy]) B(x);

(ii) there exist a constant B,>0 and a locally Lipschitz function V,(t, x, y)
defined for t=0, |x|=B; and ycR* such that

W (Ix) = (@ x, ¥) = W(IxD),
View(t %, y) =—W(x)) for t=0, |x|=B, dnd pERY,

where W, and W, are unbounded pseudo wedges and W;: RT™—>R* s continuous with
W;(r)=0 for r=By;

(iii) there exist a constant B,=O0, q locally Lipschitz function Vy(t, y) defined
for t=0 and |y|=B,, and a positive continuous function N: R*—R* with N(r)=0
for r=B, and such that

Wa(1y)) = Va(t, ) = W (1yD),
. Vo (6 ) =—W(¥)) for |y = Bs,
Va(t, )= Va(t, )| = N (max {|y], [7]}) |y,
where W,, W, are unbounded pseudt; wedges, W is nonnegative and continuous with
lim W,0)/(N @) B (7)) =

Then the solutions of (3.8) are U.B. and U.U.B.

Proof. First, we shall prove the uniform boundedness. For any o.>max {B;, By},
there exist B(x), Pi(e) and By(®)=0 such that W,(B(x))>Wa(@), Ba(c)>py()>0,
Wo()IN() B (5)— max B()=1 for s=f,@), and Wi(Ba(x))=P4(B (). Then for
any solution (x(¢), y(f)) with |x(fp)l<a, and |y(#)|<a, we have x(f)<p(x) and

()] <PBa(®) for t=¢,.
. If this is not true, then only two cases may occur:
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Case 1. There cxist fy=t,>t, with [p(t)|=py(®), [y(t)|=Pa(@), By(x)<
<|p(®)|~<py(e) for t€(ty,ty) and |x(@)|<p(®) for t€[z,, ty).

Case 2. There exist #;>t3=1, such that |x(fg)|=0a, |x(#)|=p(@), a<|x@)|<
<p(«x) for t€(ts, ty) and |p(2)|=Py(x) for t€[ts, t,).
In Case 1, for t€[t;, t,], we have
Vawa(t, y(0) =~ (1y@N)-- Ny @) B(y@®) B(x@]) =
=~ N(y@O)R(y@ON[H1»@OD/[(NIy@OD) By ) —B(*@)] =
= ~N(y@)A(ly®)) = 0.

Therefore,  Wi(Ba(2)) =V3(ty, ¥(t2)=Va(t1, y(8)) =W;(By(2)).  This  contradicts
T (2() =T (52 @). _
In Case 2, for t€[ty, t,], we have ¥ (¢, x(¢), y(¢))=0, thus
W (B@) = Vi(ta, x(t), p(t)) = Vilts, x(t5), p(15)) = Wh(e),
which contradicts W,((e))=W;(«).

Therefore, [|x(Z; %o, Xo, yo)l<B(@) and |y(t; fo, X0, Yo)l<Pa(@) for r=t, if
|xol <o and |y,|<a. This completes the proof of uniform boundedness.

Let vy(e)=min {W(r): B;+1=r=p(x)} and T;(0)=W()/v,(@). If |x(®)|=
=B, +1 holds for t€[ty, {] (#>ty+ T1()) then

Wi(By+1) = V(3 x(@, y(D) = Vi(to, x(to), y(t)) —v1(2)E—10) <
< W (0) —va (@) W (0)/v1 (@) = O,
which yields a contradiction. Therefore, there exists #;€[ty, fo+ T3 ()] with |x(¢;)| =
=B,+1. Following the same argument as in the proof of uniform boundedness,
we get |x ()| <p(By+1) for t=t;, especially for t=1,+T; ().

Choose Bg>B, with Wy(s)/N(s)P(s)—max {P,(r): |r|<p(By+1)}=1 for
s=B;. If |y()|=B; for t=ty+Ti(x), then there exists v,(¢)=0 such that
B(ly@ONN(ly@®l)=va(®), and so

Vaaa(t (@) =—B(IyONN(y @) %1y @)/ Ny ON E(y@O)—E(x@))] =
=—N(y@) Ay @) = —va(e). ‘
Therefore, if |y(¢)|=B; for t€[ty+T1 (), ty+T3(x)+7], then
- Va(to+ L@+, y(t+ (@) +1) =
= Vz(t0+T1(°‘)s J’(to'l‘]}(“)))—vz(“)i = VVs(ﬁ(“))—Vz(“)f-
If i=T;(x), where Tp(0)=((B2(x))—Wi(By)/v2(®), then '

Wi(By) = Va(to+Tu(@) +1, p(to+ () + 7)) < W (Ba(®)) — ve(@) T (%) = Wi(Bs),
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which yields a contradiction, Therefore, there exists #€[ty+ T3 (er), o+ 17 (o) + T3 (cr)]
with |y(t;)|<B,, and thus |x(t)|<B, and |y(tg)|<B,;, where B,=max {B;,
B(B,+1)}. This implies |x(#)l<B(By) and |y()|<ps(By for t=t,+T;(0)+Ta(e).
This completes the proof.

Sometimes in practice it is very difficult to find a Lyapunov function satisfying
the condition V;(¢, x, y)=W,(|x]) (see Example 3.4). Now we give a modification
of Theorem 3.5 asking the much milder property ¥ (¢, x, y) =W (Ix| +|yl).

Theorem 3.6. Suppose that
@) conditions (i), (iii) of Theorem 3.5 hold;
(ii) there exist a constant By>0 and a continuous function V,(t, x, y) defined
Sfor =0, (x, )ER™* gnd such that
Wi(lx]) = K@, x, p) = W(1x[+ 1)),

I./1(3.8)(t’ X, y) = _VVS(xa y),
where W, and W, are unbounded pseudo wedges, and Wy: R™*R* s continuous
and |x|=B, implies Wy(x, y)=0;

(i) for any M >0 there exists L(M)=>0 such that [t=0, |x|+|y|=M] imply
| X (@ x, y)|=L(M); ‘
Then the solutions of (3.8) are U.B. and U.U.B.

Proof. Obviously, by (ii) for any =0, if |xo|+|yo|<a, then |x(¢; 2y, Xq, ¥o) <
<W,(W;(@))=PB (o) provided that (x(z; &y, xo, o)> ¥(Z3 to» X0, Po)) exists. Following
the same argument as in the proof of Theorem 3.5, there exists f,(a)=0 such that
|¥(t; to, %o, Yo)l <Ba(®) provided that |xo| 4| yo| <ot and (x(¢; ty, Xo» y0)> Y (25 o5 Xo> Vo))
exists. Then the solutions of (3.8) are U.B. Throughout the remainder of the proof
denote x(¢)=x(t; %y, Xo5 Yo)» ()= (; ty5 X0, Yo)-

Lot T3 () = W5(B(0) + Ba(e))/min {W(x, »): By+1=|x|=(@), |y|=Pa(x)}. Then
by (i), for any I={, thereis a #€[f, i+T;(x)] with |x(#)|<By+1.

Suppose that for all #€[t,, #+T; («)+¢*] we have |x(t)|<By+2 and |y(t)|=B,,
where B;=B, is a fixed constant such that

Wo(r)/N(r) B (r)—max {Py(s): 0=s=B,+2} =1 for r=Bs.

Then from
) 4
Vaasy (6 7 () = = N(y D B (I ()1) [ () y(t)(||)y151t()|?;(t)|) B

= -—min {N(F)R(r): Bs=r= fy(a)} =—m

B(0)] =

we get
0=V(F+T @)+, yE+Ti(w)+1)) =

= Vi(h, y(tl))—’h[t*+ﬂ(“)+i‘“tl] = Wy (B () — m[t* +Ti () +F—1,].
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Thercfore, t*<Ty(e)=[W;(By(®))+1]/m. This shows only two cases may occur:

Case 1. |x(1)|<By+2 for all t€[t,4-Ti()-+Ty()] and there exisls £,€

€lty, I+T (@) +T(®)] with |p(t)|<Bs. In this case, |x(¢)|<B(By--Bs+2) and
19(6)|<Pa(By+By+2) for t=i+T,(@)+T().
' ) "Case 2. There exists t3€[ty, 1+T1 (@) +T; ()] such that |x(z)|=B,4-2. In this
case, therc exist #,, t;€[t,, t3] with |x(t)|=B;+1 and |x(¢t;)|=B;+2 and B,+1<
<|x(#)|<By+2 for t€(ty, t;). By condition (iii) #;—7,=1/L(B(%)+Ps()), and
(i) implies WV (i+T(®)+Tp(@)=V,(t) =V, (t)—(ts—t)m(x)=V;(H)—v(x), where
V()=Vi(t, x(1), y(®)), v(@)=[L(B(@)+Pa(@))]*m(x), and m(x)=min{W(x,y):
B,+1=|x|=p(@), |y|=p:(®)}. Making the choice I=t,=ty+m[T;(®)-+T;()]
(m=0,1,2,...) we gel that either |x(¢)|<p(By+Bs+2) and |y(¢)|<ps(By+B;s+2)
for t=t¢, ., or

(3 . 12) Vl (tm + 1) = V] (tm) - V(OC) .

On the other hand, 0=V,(1)=W;(B(®)+Pa(«)) for t=t,, and so (3.12) can not be
true for m=0, 1, ..., N, where N=N(x) is a positive integer such that N(x)v(«)>
>Wo(B @) +Pa(«)). Therefore, |x(t)|<p(Bi+Bs+2) and |y(t)l<Pa(Bi+Bs+2)
for t=ty+[N(«)+1][Ty(@)+T3(x)]. This completes the proof.

Example 3.4. Consider the Liénard equation with forcing term
(3.13) E+f(x)x+g(x) =p@®,

where f(x) and g(x) are continuous for x¢ R and p(¢) is continuous for #=0. Besides,
we assume that

@) flo)=1;
(i) x{g(x)—xlf(x)—1]}=0;

(i) [ |p(s)l ds<oo.
0.

Then the solutions of (3.13) are U.B. and U.U.B.

Proof. System (3.13) is equivalent to
(3.14) ¥ ==x+y, y=—{¢®@—xLfx)—1}-L/x)-1y+p®.
Let V(5% 0)=[p*+2 (s0)=rl/ @)~ 1]+ [ 1p()lds.

0 t

Then

L U@ g@—-2@-1) __p
2 [ e —rir) 11 ar]™

I'/(3.14) @ x, )
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Then |p|=>0 implies W (x, y)=0. On the other hand, for the subsystem Xx=—x
the auxiliary function V;(¢, x)=x%, N(r)=2r and W;(r)=2r? satisfy condition
(iii) of Theorem 3.5 and so the solutions of (3.13) are U.B. and U.U.B. by Theorem
3.6.

4. An application to a holonomic scleronomic mechanical system

Consider a holonomic scleronomic mechanical system of n degrees of freedom
being under the action of potential, disspative and gyroscopic forces, The motions
such a system can be described by the Langrangian equation

d or 0T on
(4.1 TG 0 9 - —B{+Gq,

where g, gER" are the vectors of the generalized coordinates and velocities, respec-
tively, m=m(t, q) is the potential energy, T=T(q, §)=(1/2)4TA(q)q is the kinetic
energy where A4(g) is a symmetric nXn matrix function (v* denotes the transposed
of v€R"); B=B(t, q) is the symmelric positive semi-definite »X» matrix function
of dissipation, and G=G(t, g) is the antisymmetric n)Xn matrix of the gyroscopic
coefficients.

By the Hamiltonian variables g, p=A4(q)4 system (4.1) can be rewritten into
the form

42 _om . 0H

_ oy OH
o 1T YO Dy

where H=H(t, p, q) is the total mechanical energy:
H =H(t, g, p) = T+n = (1/2)p" 4~ () p +=(2, g).

iy

Choose the auxiliary functions V=H(t,p,q), W=pTq. Their derivatives with
respect to (4.2) read as follows:

H= [gH) (e )gf g? =—pTA-*(q)B(t, q) A~ 1(q)p+_3_n§_tz,_q_)§

=—p(t, A~ (q)pT A (gp+ [‘an—;gtfglL

where f(z, q) denotes the smallest eigenvalue of the matrix B(¢, g); A(g) denotes
the largest eigenvalue of 4(g). It is known from the mechanics that the kinetic energy
is a positive definite quadratic form of the velocities, consequently A4(g)>0 for all
g<R"
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Let
..1(q) (aij (q))uxn ’

_( 9ai3*(q) dajiit (q)) - _
du - [ 8q1 > aq" 4 (q)]), D= (dij)nxm
n ~1
e, = Z ,._a_‘_gj...(.g?.p‘pi’ €=(€1,-..,e,,)T.
i, j=1 9k

Then for P:=pTA~'(q)p, its derivative with respect to (4.2) is
T
P= [—Bf-—-!m%—pTA‘l(q)p-l- (G —B)A”l(q)p] A7 (@)p+

+pT47(q) [_ﬁ_’f,_%_(_%pu Yqp+ (G- B)A‘l(q)p]ﬂ)TDp =

=2 [m"’”g” D" -2 +p™ 4 @UG~BY (GBI @D~
2 e OO [pTA‘l(q)p]+1)TDp = 2[——(9”;2 2 ]TA‘I(q)p—
—2pTA‘1(q)BA Y@p—p"A7*(9)e+p"Dp;
[PL. = | 5506 0| Ba, )+ Fa(a. )
where

Fy(q, p) =2|47(g)pl, Fs(g, p) = |pl147(q)|le|+|D| p*
Similarly,

W= 5T +p%4 =_[ on(t, Q)] q+ eTg+pTA=1(q)(G—B)Tq+p"4~(q)p,

[W| =

qT_an_g;_g_)_l—W(t, 9)—B(t, 9\ F5(q, p)— Fi(g, p),
where

1
F(q, p) = = lellgl +147* (@ p?  Fs(q, p) = |A72(Dll4l|p.
2

It is easy to prove that F;(g, p) are continuous for p, g€R", and for every M=0,
lim sup F(q,p)=0 for i=2,...,5. Therefore, from Theorem 3.3 and Remark

p>0 |
3.5, we get the following

Corollary 4.1. Suppose that there are B=0 and unbounded pseudo wedges
W,, W, such that
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) WM(gh=n(, 9)=We(lql) for t=0 and g€R";

(i) for every M=0 the function Py (t)=min {B(¢, q): 0=|q|=M} is weakly
integrally positive,

(ili) there is a continuous function r; R*XR*~R™ such that r(t, u) is increasing
with respect to u for every t€R* and [9n(t, q)/0t],=r(t, n(t,q)) for t€R* and
geR";

(iv) for every uy=0 there is a u, > u, with f r(s, uy) ds<u,—uq;

(v) for every M =0 the function |0rn(t, q)/oaql is bounded for t=0 and |q|l=M;

(vi) for every M=>B there are ji,y=0 and Ky =0 such that |qTon(t, )/9q| = pir
1G(t, 9)—B(t, Q)| =Ky for t=0 and B=|q|=M.

Then the motions are U.B. and E.U.B.

If, in addition, B, (¢) is integrally positive, then the motions are U.B. and U.U.B.
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