
Tόhoku Math. J.

41 (1989), 689-710

ASYMPTOTIC CONSTANCY FOR LINEAR NEUTRAL
VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

JOHN R. HADDOCK1, M. N. NKASHAMA2 AND JIANHONG W U 3

(Received September 9, 1988)

1. Introduction. An interesting problem that has been investigated over the past

several years has been the study of asymptotic constancy of solutions of differential

equations for which each constant function is a solution itself. For ordinary differential

equations the only such equation is x' = 0. A list of certain results and references for

retarded functional differential equations (RFDEs) with finite or infinite delay can be

found in Haddock [3].

The simplest neutral functional differential equation (NFDE) for which each

constant function is a solution is the scalar linear homogeneous case

(1.1) - ^ ίx(t) - cx(t - r)] = - ax(t) + ax(t - r).
dt

Using a Liapunov functional technique adapted from Hale [6, p. 120] for the case c = 0,

the first two authors proved (classroom notes) that each solution of (1.1) tends to a

constant as /-»oo provided a>0, r>0, | c | < l . Likewise, Wu [7] proved recently that

each solution of the (nonlinear) scalar equation

(1.2) ±Mt)-cx(t-r)] = -F(x(t))+F(x(t-r))

tends to a constant as ί->oo, whenever 0 < c < l and F: R^R is continuous and

increasing. However, the problem often becomes more complicated when an integral

or infinite delay (or both) is involved. Along these lines it appears that very little has

been accomplished regarding asymptotic constancy of solutions of scalar NFDEs more

general than (1.1) and (1.2).

The primary purpose of this paper is to provide conditions for the asymptotic

constancy of solutions of linear neutral Volterra integrodifferential equations
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(1.3)

CO Γt

- rf) + h(t -
J-oo

= - ax(t) + X aμit - rf) + h(t - s)x(s)ds
i=l J-oo

for which a > 0, at and bt are real numbers with £ £ t (| αf | + |£\ |) < oo, {rt } is an increasing
unbounded positive real number sequence, /, h: [0, oo)-+R are continuous and
ί^[| f(t) I +1 Wt) \]dt< + oo. In particular, we combine properties of orbits through limit
sets, Liapunov-Razumikhin techniques, limiting equation theory, invariance principles
and precompactness of bounded orbits to give conditions for which each solution of
(1.3) tends to a constant as /-•oo.

In Section 2, we see how certain Cg phase spaces often arise in a natural way for
(1.3) and obtain sufficient conditions for bounded positive orbits to be precompact with
respect to these spaces. In Section 3, we establish that all solutions of (1.3) are bounded
(in the future) and that the zero solution of (1.3) is uniformly stable. This is accomplished
by employing Liapunov-Razumikhin techniques developed for NFDEs by Haddock
and Wu [5]. Section 4 contains a result which shows that, for any solution z through
limit sets of bounded positive orbits of (1.3), the corresponding D functional defined by

-r,)-\ Λ-t
J — oo

D(φ) = φ(0)— Σ bιφ{ — r^)~ f( — s)φ(s)ds

satisfies a certain infinite delay retarded FDE. This result in turn has an immediate
application regarding the asymptotic constancy of D(zt), where zί(s) = z(ί-hs)(s<0, ί>0)
is the usual FDE notation. For a solution z of (1.3), a result concerned with the
equivalence of the asymptotic constancy of z(t) and the corresponding D(zt) is the main
content of Section 5. Finally, in Section 6 we combine the results of Sections 1-5 to
prove under general conditions that each solution of (1.3) tends to a constant as t->co.

Although we are interested in asymptotic constancy of solutions of NFDEs, some
of the main merits lie within the supplementary results themselves. For instance, we
establish a relationship between solutions of neutral and retarded FDEs in Section 4,
and an equivalence of asymptotic constancy of D(xt) and x(t) is given in Section 5. In
addition, the importance of uniform continuity of various functions related to solutions
is displayed throughout the paper.

2. Cg phase spaces and precompactness of bounded orbits. In this section we

discuss the construction and ramifications of certain phase spaces for NFDEs. In
particular, we examine Cg spaces, where g: (— oo, 0]->[l, oo) is continuous and
nonincreasing and Cg consists of the space of continuous functions φ on (— oo, 0] with
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\Φ(s)\ ,

g(s)

The norm on Cg is defined by

\Φ(s)\
0 *s)

It is important to note that we let conditions with respect to the equation at hand

determine the phase space(s) as opposed to allowing the space to dictate the conditions.

The techniques used to determine the spaces are an adaptation of those used by Burton

[2, Chapter 4], Atkinson and Haddock [1], and Haddock and Hornor [4].

LEMMA 2.1. Suppose

Γ |Λ-*)|Λ+f>il<α ™d Γ
J-oo ''=1 J -

for some constants α and β, 0<α,/?<oo. Then for each r>0 there is a function

g:(- oo, 0]-*[l, oo) satisfying

(gl) g: (— oo, 0]->[l, oo) is a continuous nonincreasing function such that g{s)=\

(g2) g(s + u)/g(s)-+l uniformly on (—oo,0] as u^>0~;

(g3) g(s)^>oo as s-+ — oo; and

(g4)

Γ \f(-s)\g(s)ds+Σ\bi\g(-rd<oi, Γ \h(-s)\g(s)ds+Σ\ai\g(-rd<β.
J-oo i=l J-c» *=1

PROOF. Let

« i = Γ \A-s)\ds+Σ\bi\, βi=[° W-s)\ds+Σ\<h\,
J-oo «=1 J-oo *'=1

and for each i ^ l , let εi = ( α - α 1 ) / 2 i + 1 0 ' + 2 ) , 5 i = (jS-j81)/2 i + 1(/+2). Owing to the

absolute convergence of the series ΣT=ιat a n ( ^ ΣT=i^i a n d the boundedness of

ί- oo [l/( — s) I +1 h( — s) Πds there exists a subsequence {rn.} of {rf} such that

(i)

(ϋ)

Σ 5
k=m 2

Σ l**l<v a n d

jk=Πi 2
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rnχ>r.

Now, define g: (— oo, 0]->[l, oo) as follows:
(a) g is continuous and piecewise linear (linear on intervals [ — rΛi + 1, — rnj),
(b) 0(s)=lon[-r Π l ,O],

(c) g(-rn) = i+l.
It follows from (b) and the restrictions on α, α1? β, and βx above that

l/(-

I h ( -
J-rn i

s)\g(s)ds+
J-rn i

Hence,

f°
J-o

= Γ ι/(-s)iβ(s>fe+Σ f r"' i/ί-
J-rn, i = l j _ r n ( + i

^ ° ^ + Σ fl(-r..+I

2 1-1 ' '1-1 LJ-rn ( + 1

Likewise,

\H-s)\g(s)ds+Σ\<h\0(-rd<βΓ
J-o

This completes the proof.

REMARK 2.1. It is clear that, in the proof of Lemma 2.1, we may replace condition
(b) in the definition of the function g by the following

(b') 0(0) = 1, and g(s) > 1 for s e ( - rΛl, 0) is such that

Γ \f(s)\g(s)ds+

J-rni

Γ°
|Λ(

JrnΛ

^ I ( 11/ \ " 1 ^ Λ

This remark will be used in the proof of Theorem 4.2 in Section 4.
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LEMMA 2.2. Suppose there exists a continuous function g: (— oo,0]->[l, oo)

satisfying (gl), (g2) and (g3), such that

J-o
\f(-s)\g(s)ds = c

and let x: (— oo, + co)-^R be continuous with x0 e Cg and\ xo(s) \/g(s)^O as s-+ — oo, (where

xo(s) = x(s)9s<0).If

h(t) = x(t) - Σ biX(t - rd - ί' /(ί - s)x(s)rfs
i=l J-oo

is uniformly continuous on [0, oo), ί/zen x: [0, oo)->K α/ so is uniformly continous.

PROOF. Suppose the conclusion is not true for a continuous x: (— oo,

Then there exists a constant ε > 0 such that, for every δ>0, there is a / > 0 so that

I x(t)~x(t-δ) I >ε. Let 5 = 5? = 1. Then there exists t\ > 0 so that | x(ίf)-x(ί?-<5f) | >ε.

On the other hand, x is uniformly continuous on [0, ί J ] , so we can find a positive

constant δx <δ% so that |x(ί) —x(ί — <5t) | < ε for all ί e [0, f J ] . According to the definition

of ε, there exists ί f * > / f so that |x(f}*) — x(ί?* — 5^1 >ε. Hence, there must be / ! > / *

so that I x(ί i)-x(ί i — 5X) I = ε and | x(ί) — xit — δ^ \ <ε for t e [0, ί x). Now, x(ί) is uniformly

continuous on the closed interval [0, tx H-1], so we can find a positive constant δ2<δ1/2

so that I x(t)—x(t — δ2) | < ε for all ί e [0, ίx + 1 ] . Likewise, by the definition of ε, we can

find t2

<>t1 + \ so that |x(/*) — *(** — δi)\^ε> a n d , thus, there exists t2e[t1 + l, /f] so

that I x(ί2) - x(ί2 - δ2) I = ε and | x(ί) - x(ί - δ2) \ < ε for all t e [0, t2). Continuing the above

argument, we can choose two sequences {tk} and {δk} so that

(a) tk + ί > tk+ 1 and thus lim^^^ tk= + oo,

(b) 0 < δk+1 < δk/2 and thus limk _ „ 5k = 0,

(c) |x( ί k )-x( ί k -(5 k ) | = ε f o r a l l f c = l , 2 , •••,

(d) I x(ί)-x(ί-<5k) I < ε for all ik= 1, 2, and for te[0, ίk).

Therefore,

5 k ) < β < 0 |x ί k (θ)-x ί k _ ί k (0) \/g{θ)

_ ( ί k_, k ) |xfk(0) -x ί k _, k (0) \/g(θ)

g(θ-tk+δk)

and
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Γ f(tk-s)x(sχds)- Γ S"f(tk-δk-s)x(s)d.
I J - 0 0 J - 0 0

/ ( — u)[x(u + tk) — x(u + tk — δk~\du
00

ί:
( - H)[X(M + tk) - x(u + tk- δk)-\du

tk+ίfc

•Γίk+«5k

< ί " "\f{-u)\g(u)du\xtk-xtk-Sk\Cβ+ε\
J — oo J — ]

f-ίk + ίk fθ

< \f(-u)\g(u)dulε + \xδk-x0\Cg-] + ε
J — oo J —

I/(-«)!<*«

\R-u)\du.

By passing if necessary to a subsequence relabeled tk — δk, we may assume, without loss

of generality, that, for every k = 1, 2, , there exists an integer wk so that tk — δk — rt > 0

for /=1,2, -mk9 and tk — δk — rt<0 for /=/w f c+l, mk + 2, . Thus,

iX(tk-rd- Σ *Λ-^-^i

Σ I bi \\*{tk — rt) — x(tk — δk — t
= m k + l

ί = 1
Σ \bi\g(-

i = mk + 1

< Σ \bi\ε+ Σ \bi\g(-rd\xtk-Xtk-δk\cg
i=l i = m k + l

<Σl*. lε+ Σ
i = l ί = m k + l

It follows from the equality

f(t-s)x(s)ds
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that

Σ t>i[x(tk-rύ-x(tk-δk--χ(tk-δk)\<\h(tk)-h(tk-δk)\ +

+ Γ f(tk-s)x(s)ds-\tk f(tk-δk-s)x(s)ds

I J — oo J — oo

<\h(tk)-h(tk~δk)\+Σ\bi\ε+ Σ \bi\g(-r^ + \xSk-x0\cl
ί = l i = m k + l

+ ε \f(-u)\du+\
J -oo J -oo

<\h(tk)-h(tk-δk)

Σ \bt\g{-rd+\ \f(-u)\g(u)du \[ε + \xδk-xo\cj •
i = mk+l J-n J H

Now, ΣΓ=i\ bi \9( ~ rd + ί - oo I / ( ~ M) \d(u)du < ! a n d MO is uniformly continuous on
[0, oo), so we can find a constant ^ > 0 with

\h(tk)-h(tk-δk)\ + \Λ-u)\g(u)dulε+\xSk-x0\cl

for k>K. Now, (gl) and (g2) together with the assumption that \xo(s)\/g(s)^>0 as

$-• — oo assures that the mapping t-+xt is continuous in Cg. Therefore, for k>K, we

have

LJ- Σ n
This is contrary to (c), and, thus, the proof is completed.

The following result, which provides conditions for a bounded positive orbit to be

C^-precompact, was established by Haddock and Hornor in [4].

LEMMA 2.3. Suppose g:(-oo, 0]->[l, oo) satisfies (gl), (g2) and (g3). Ifx: R^R

satisfies the following conditions

(i) x0 G Cg and x is bounded and uniformly continuous on [0, oo),

(ii) I xo(s) |/0(s)->O as s-+ - oo,

then the set {i.e., positive orbit) {xt\ t>U] is precompact in Cg.
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Combining Lemmas 2.1, 2.2, and 2.3 with a brief argument, we obtain the main

theorem of this section. Theorem 2.1 provides an important generalization of Theorem

3.1 in [1] and Theorem 3.2 in [4]. We illustrate its significance in subsequent sections.

THEOREM 2.1. Suppose

oo ΛO

| / ( - M ) | d w < α < l and Σ \ai\+\ \h(-u)\du<β< +oo .
> ί = 1 J — oo

Then there exists a function g: (— oo,0]-»[l,αo) satisfying (gl)-(g4) and

(g5) for any solution x(t) of (1.3) defined on [0, oo), if xoeCg, \ xo(s) \/g(s)^>0 as

S-+ — O0, and x: [0, oo)->K is bounded, then the set {xt\ t>0} is precompact in Cg.

PROOF. By Lemma 2.1 we can find a function g: (— oo, 0]->[l, oo) satisfying (gl),

(g2) and (g3) and such that

\Λ-s)\g(s)ds+Σ\bi\g(-rd<M<U

\h(-s)\g(s)ds+ Σ
i=ί

where M and N are constants. Since x(t) is a solution of (1.3) defined on [0, oo), we have

"f [*W-Σ brit-rd-j* f(ts)x(s)ds~j[ .
<a\ x(t) I + Σ \at 11 x(t-rd \ + [ \h(t-s) \ \ x(s) \ds .

Let Kbe an integer so that rκ<t<rκ+1. Then
OO OO

Σ\ai\\χ(t-rd\<
i = l i = K+ί

and

Γ
and, thus, h(t) = x(t) — ΣΠ= i btx(t — rt) — J*. ̂ /(ί-5)x(s)ds is uniformly continuous.

Therefore {xt:t>0} is precompact in Cg by Lemmas 2.2 and 2.3, thereby completing

the proof.

3. Boundedness and stability. In this section we examine boundedness and

stability of solutions of (1.3). These properties coupled with the precompactness results

of the previous section and the upcoming "reduction" results in Sections 4 and 5 will
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be instrumental in establishing the asymptotic constancy theorem of Section 6.

THEOREM 3.1. Suppose there exists a function g: (— oo,0]-*[l,oo) which satisfies
(gl) and (g2) such that

\f(s)\g(s)ds<\

J-o
\h(-s)-af(-s)\g(s)ds

i=l

Then, for any φεCg with \ φ(s) \/g(s)—>0 as s-> — oo and any solution x(t) of (1.3) through

(0, φ),

+Γ-001/(

PROOF. First, we prove that, for

s P
D(t) = x(t) — L biX(t — r^— f(t

i=l J-oo

we have

(3.1) \D(t)\<M(φ) = \ 1+1 \f(-s)g(s)ds+ f l ^ l ^ - η ) ] ^ ^ .
L J - oo i ~ 1 J

Suppose not and notice that

Σ | 0 \f(s)\g(s)dsj\φ\Cg.
If (3.1) does not hold for some φeCg— {0}, then there exists a first τ>0 so that

D\τ) = M\φ)

and

— D2(t)>0 at ί = τ .

On the other hand, by the definition of τ, we have

\D(t)\<M(φ)
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for ί e [ 0 , τ ] ; that is,

(3.2) )-Σbrtt-rd-Γ /(-
i - 1 J - oo

x(t) - Σ bAt - r, ) - / ( - s)x(ί+s)ds M(φ).

Choose τ* e [0, τ] so that

(We note that this max exists due to (gl), (g2) and the choice of φ = x0, i.e. w->xw is
continuous with u restricted to [0, τ]). In particular,

\x(τ* + s)\ \x(u + s)\
(3.3) sups<0 — — = maxue[0,τ]sups<0

Note that if s< —τ*9 then

I x(τ* + s) \/g(s) = U x(τ* + s) \/g(τ

<\x(τ* + s)\/g(τ* + s)<\xo\C

Therefore, (3.3) implies that there exists a s*e[ — τ*, 0] so that
Cg

Let rκ<τ*<rκ+1. Then by (3.2) we have

(τ* + s*)\lg(s*)

Σ it.w-rj

"i/(-»)i#)N';tr.;"l^+ Γ i/t

<Σ\bi\g(-ri)\xτ'-rt\cβ+ Σ l^lflί
ί = l i = K+l

+ ί τ l/(-s)lfl(s)l*olc.<fa+ Π | / ( -
J — oo J — t *

Σ I *ί l ^ ( -

This implies

for te[O, τ]. Thus, at/ = τwe have
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£ (α,-ab,)x(τ-17) + f° (h(-s)-af(-s))x(τ + s)ds
i=\ J-oo

\h(-s)-af(-s)\g(s)ds^\D(τ)\\xτ\Cg<0 ,<-aD2(τ) +

which leads to a contradiction. Hence, (3.1) is true for all t>0. Suppose |jφ>)| =
m a xo<s<t;l χ( s)l a n d let rL<v<rL+1 for some integer L. Then by (3.1) we have

\Φ)\<Σ\bi\\*(v-rd\+ Σ \bi\9(-ri)
lX{Γrill9iΓri!ί=i i=L+i flfίt -r,) 0(-r f)

ί " I / ( ~ s) \g{s)'Xi] + S\' Φ + S) ds+Γ \f(-

Γ Σ Ib,\g(-rd+\° \f(s)l<7(s)dsl\φ\c>+M(φ).

It follows that

^ + \ΣT-ί\i>Mrd+i.Jf(s)\g(s)ds]lΛι

i-Σ l*l-f°J/(-*)lΛ "'
which completes the proof.

The final result stated in this section is an immediate consequence of Theorem 3.1.

C O R O L L A R Y 3.1. Suppose there exists a function g:{— o o , 0 ] - + [ l , oo) satisfying

( g l ) and (g2) such that

(3.4) ΣlbM-rd+Γ \f(-s)\g(s)ds<\
i=l J-oo

and

(3.5) Σ I βι - β*ι lff( - r , ) + Γ° IH - s) - aft - s) \g(s)ds
i=l J-oo

< αΓl- Σ \bM-rd-j ° I / ( - s) I0(s)<fcl,

all solutions of (1.3) are bounded (in the future). Moreover, for any ε>0, ίΛere ex/sίi
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δ > 0 so that \φ — ψ\Cg<δ implies \ x{t; φ) — x(t; φ)\<εfor / > 0 and any φ and φ for which

\φ(s)\/g(s)-*O and \φ(s)\/g(s)-+O as s-> — oo. (That is, each solution of (1.3) is stable.

Moreover, δ depends on ε alone and not on φ and φ.)

4. Reduction to retarded equations. In this section we establish a relationship

between solutions through ω-limit points of (1.3) and solutions of a certain retarded

FDE. According to Theorems 2.1 and 3.1 and Corollary 3.1, if (3.4) and (3.5) hold,

then {xt:t>0} is precompact in Cg if xo = φeCg and | xo(s) \/g(s)-+0 as j-> —oo. Let

ω(φ) be the positive limit set of the orbit {xt: t>0} in Cg, φ an element in ω(φ) and

z{t) the solution of (1.3) through φ. Then z(t) satisfies the following equation

(4.1) τ ί z « - Σ bAt-rd- P f(t-s)z(s)ds~\
dt\_ i=i J-oo J

oo Γt

= - az{t) + X a{z(t - rf) + h(t - s)z(s)ds
*=1 J-oo

for all teR, and the boundedness of the solution x(ί) implies the existence of a constant

M>0 such that

(4.2) \z(t)\<M

for teR. Let

= z(t)- Σ biZ(t-rd-\ f(t-
* = 1 J-oo

(4.3) y(t) = z(t)- Σ biZ(t-rd-\ f(t-s)z(s)ds .
* = 1 J-oo

The following theorem shows that y(t) satisfies a retarded equation with infinite delay.

THEOREM 4.1. Suppose (3.4) and (3.5) hold. Then y{t) defined above satisfies the

retarded equation

(4.4) 4- 3<0 = " *3<ί) + Σ Σ ' Σ K - obύK''' M r " rM " * * * " r0
at j= 1 i, = 1 ij = l

J-oo

h1(t-s)y{s)ds

o

oo oo oo r*~rn rij

+ Σ Σ '' Σ K'' 'K KM-rh -'" -rij-s)y(s)ds,
.7=1*1 = 1 0 = 1 J - o o

where, for any u, veLx[0, co),

(u*v)(t)= u(t-s)v(s)ds
Jo

and
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lff(t),

) = f*f*- *f(t) j times, with / * = / .

h1(t) = h(t)-af(t)

(4.5) hiιj+1(t) = (

PROOF. Obviously

(4.6) z(t) = y{t) + 2, M*-**/) + f(t-s)z(s)ds
i= 1 J-oo

for all ίeiί, and thus

- Σ ft^ί-r^H- f(t-s)z(s)ds
* = 1 J — oo

£ P Γ £
- 2^ t>iZ(t — Γ f)+ /(ί — Sl) y(Si)+ 2J ^i Z ( S l~ r i )

i= l J-oo L i=l

+ Γ1 f(s1s)z(s)ds\s1=y(tnfJbiz(t-ri)+\t f{t-sλ
J—oo J i—1 J—oo

oo ^ί-Γf Λί

+ Σ bi\ f(t — ri — s1)z(s1)ds1-\- f\\
i = l J-oo J-oo

Using (4.6) at s, we get

^ P
Z(ί) = y(ί)+ 2^ ^2^""^)+ /(ί — Si^S!)^!

»= 1 J - o o

i = 1 J — oo J — co

+ f{s-u)z(u)du \ds = y(ή+ Σ M i - ^ ) + f(*-s)y(s)ds
J — oo J * = ^ J—oo

j*ί oo Γt-Γχ

J — oo i = 1 J — oo

+ Σ *f f "/!it-»-i-sMs)<fa+ [' /?(t-Φ(5)ds.
i— 1 J — oo J—oo

By repeating (4.6), we get
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s)y(s)ds

( 4 7 )

It is easy to prove that

t)+ Σ Mί-ri)+ Γ Σ ff(t-
ί = l J-ooi=l

£ * i | ' Σ ff(t-ri-s)z(s)ds+ Γ ft+1(t -s)z(s)ds.

Γ
By J^ I f(s) \ds< 1 and from (4.2), we know that

(4.8) k(ή=Σf

is well defined and

I Γ fϊ+i(ts)z(s)ds ^ Γ J

as k^co. Passing to the limit as fc->oo in (4.7) we get

(4 .9) z(t) = y(t) + Σ M i " rι) + ff Mi - s)y(s)ds + £ *
i = l J-cχ) * = 1

Therefore,

J — oo J — oo * = 1 J — oo

+ f' (Λ fcXt - s)><s)ώ + Σ bt ί' "(/I * m - r, - s)z(s)ds .
J — oo i = 1 J — oo

According to (4.1), we get

4~y®= -*><*)+ Σ («ί-αbi)z(ί-ri)

+ Σ *ί [' ' 'Uί-^-^-αfeίί-η-

oo Γt oo Λί-Γj

= - ay(t) + Σ (fl« - a b M t - r f ) + fcx(i - s)y(s)ds + Σ b i \ h i ( t -
i=l J-oo i=l J-oo

Using the equality (4.9) at t — riχ we get



VOLTERRA INTEGRODIFFERENTIAL EQUATIONS 703

d
— y(t) = -ay(t) +

t

Γt oo Γ oo

hί(t-s)y(s)ds-\- Σ (α^ —αfc£l) y(ί-r f l)+ Σ b^t-r^-r^)
J-oo *Ί "= 1 L i*2 = 1

+ k(t — rh — s)y(s)ds + 2^ ftί2fe(ί — rh — ri2 — s)z(s)ds
J-oo i2=lJ-oo J

00 Γt~riί Γ °°

+ Σ *ii Λi(ί — Γi.—«)Lv(w)+ Σ bi2z(u — ri2)
li = l J-oo L 2̂ = 1

Γ w ^ Γ M " r i 2 Ί
H- fe(ι/ — s)y(s)ds+ Σ ^ί2 k(u — ri2 — s)z(s)ds \du

J-oo » 2 = l J - o o J

J-oo ' S y S S ii = l J - o o f l 1 Γ f l

00 00 00 ( % ί ~ Γ ί l ~ Γ * 2

+ Σ K-^,Mi-O+ Σ Σ K\ hiιl(t-ril-rh-s)z(s)ds
ϊ'l = l ϊl = l 12=1 J - 0 0

oo oo

Again, by using (4.9) at t — riχ — rh — — rik and s < t — riχ — — rik we get the following

iterative formula.

-j-y(t)=-ay(t) +
at

oo oo oo

(4.10)

hΛt — i

J-oo

oo

Σ Σ ••• ΣK-<)
j = l i ! = l ij=l

k oo oo Γt~riί

 rij

+ Σ , Σ • .Σ^ I bh • -bijtijt-r^-' • -rh-i
oo oo oo Cf~rH Γ i k+i

+ Σ Σ Σ V-A*! M ί-''i,- -'-it+,-^
1*1 = 1 1*2= 1 »k+l = l J - 0 0

00 00 00

-s)y(s)ds

Obviously,

(4.11)
00 00 00

Σ Σ Σ
ί 2 = l

Σ I«»»-«*ί, IΓ Σ I
• 1 = 1 L = l
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as /τ-»oo. On the other hand,

V\m\dt< Σ \ff
Jo i=i

Therefore,

Γ\hx(t)\dt£ Γ\h(t)-af(t)\dt+ Γ\h(t)-af(t)\dt Γ\k(t)\dt
Jo Jo Jo Jo

JZ\h(t)-af(t)\dt

~ l-Jόl/WIΛ •

ΓlKJήldt^a^ab^ Γ\k(t)\dt + \bil\ Γ\h1(t)\dt\l+ Γ\k(t)\dt\
Jo Jo Jo L Jo J

l—]o\f(t)\dt [l-J"l/(ί)|Λ][l-J?

Γ
Jo

Using the above iterative inequality, we get the following estimate.

(4.13)

Γl+Γ|fc(t)|ΛΪ

'"'
i f •
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This implies

00 00 00 Ct~Ti\ Γ i k + 1

Σ Σ Σ K ' K+λ hiιk(t-riι- -rik+ι-s)z(s)ds
ii = l i 2 = l ίfc+i = l J -a ,

Computing the limit as fc->oo in (4.10), we get (4.4). This completes the proof.

THEOREM 4.2. Suppose (3.4) and (3.5) ΛoW. Then y(t) defined by (4.3) tends to some

constant as ί-*αo.

PROOF. Let

~ Γ < ~ Γ r i J ) J ' ̂ ' , i i= 1. 2, •; r f l +

For any teR with y\t)=V(t\ replacing b{ by b^-r^ and/(s) by f(s)g(-s) in the

estimates (4.11), (4.12) and (4.13) obtained in the proof of Theorem 4.1, we get

\ d 00 00 00

Λoo

+ f !*,(
Jo

+ Σ 1- ΣKG(-^) • *ι/H-τt)\ \hh]{t)\g{-t)dty\t)

< ~ay2(t)+y2(t) IΣV = 11"l1 '^ ^~[ll)+H

o
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Σ t % i K t , \β(n)ίo\f()\g()

ίltf\f()\()dy

Σ Γ 1 a~aK l<K-r,,)fg1 \f(t)\g(-t)dt, ΣΓ-

[i -Jό I fit) \g(-tm2 j

L l-ΣΓ-ilM J
Therefore V(t)<0. This shows that F(ί) is a bounded nonincreasing function, and thus

lim ί_00K(ί) = C 2 exists, where C is a nonnegative constant.

By Lemma 2.3, ω(y0) is nonempty. Let φ be a given element in ω(y0) and z(ί) be

the solution of (4.1) through (0, φ). Then we have the following identity.

s) Ί 2 ]
I ^>0, /i, , /,= 1, 2, •: s + rit + r. </>

" 5 ) J " 1? ' li " J
= c 2

for all /eΛ. Therefore z 2 ( ί ) < C 2 for all teR.

If z 2 ( ί ) < C 2 for some ί = τ, then z2(ί — s ) < C 2 for all SG[0,SQ], where <50<r1 is

some positive constant depending on z and τ, and thus, by Remark 2.1,

M s u p S 6 [ ( M o ] * 2 ( ί - 4 2 , f < C

which is contrary to the identity W(t) = C2.

Therefore, z2(ί) = C 2 and, thus, z(ί) = C or z(ί) = - C for all / e Λ, which implies that

ω(y0) is a singleton consisting of a constant function. Our conclusion trivially follows

from the attractivity of ω(y0). This completes the proof.

5. Equivalence of asymptotic constancy of D(z(ή) and z(ί). In this section we will

establish an equivalence result with respect to asymptotic constancy of D(z(ή) and z(t).
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THEOREM 5.1. Suppose

i = l Jo

Let z(t) be a bounded continuous function defined on R such that the function

= z(t) - Σ biZ(t - rd - Γ f(t -
i=l J-oo

y(t) = z(ή- 2, biZit-Ti)- I f(t-s)z(s)ds

tends to a constant c as t-+co. Then

[ Γ oo oo oo oo Λoo

l + k(t)dt+ Σ Σ Σ V A HW
Jo J = 1 ii = l ij=ί Jo

oo oo

+ Σ Σ
where

oo oo oo

Σ
J = l

hJ+1(t) = hJίt) + WHhj*kM.

PROOF. By (4.9) we have

oo Γt oo Γt — Ti

(5.1) z(t) = y(t) + Σ btz(t-rt) + k(t-s)y(s)ds + Σ K^-ri~s)z(s)ds .
1 A •/ — oo ι — -1*/ — oo

Using this equality at t — ri9 we have

z(ί) = y(ί) + fe(ί - S)y(s)d5 + Σ K \y(t - rtι) + k(t - riχ - s)y(s)ds
J — oo *i — 1 L J — oo

00 00 Γt~ril~ri2 Ί

+ Σ M i- r i i- r i i)+ Σ *i2 Φ)ds
i =1 ί2=l J-oo J
2

00 [**-»•<! Γ ΓU

+ Σ *»! *(ί-' ii 1-«) J<«)+ fe(M-s)j(s)dsi - 1 - o o

Σ bt2zH-rtl-r^+ Σ f" r'2/c(u-ri2-ί)z(
2 = 1 « 2 = l J - 0 O

+ fe(t-s)3<s)ds+ Σ K\ h,(t-rh-
J-oo »i-l J-oo

s)y{s)ds
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00 00

bιtΛt-rtl)+ Σ Σ btlbtjt-rtt-rj
i, = H 2 = l

.Σ .Σ bhbh\ Kit-r^-r
h = 1 »2— 1 J — oo

B y c o n t i n u i n g t o u s e ( 5 . 1 ) a t t — rii—ri2,t — ril — ri2 — ri3, •••, w e c a n e s t a b l i s h t h e

e x p r e s s i o n :

z(t) = y(t)+[t k(t-s)y(s)ds
J — oo

00 00 00 Ct~r*l r*j

+ Σ Σ * Σ K'' A Ht-Ttt- ''' -rijs)y(s)ds
j=liι = ί ij=l J-oo

00 00 00 Γt~riί rij

+ Σ Σ Σ V A Ht-*h-' ' -rij-s)z(s)ds
3=1 ii = l ij=l J-oo

from which (by a standard ε-δ argument) we can prove that

limz(ί) = Γl + Γk(t)dt+
L J

Γ
Jo

00 00 00 ΛθO

Σ Σ •••Σfti/ Λ
= l i i = l 0=1 JO

This completes the proof.

6. Conclusion. In this section, we will prove an asymptotic constancy result by

combining all results in previous sections.

THEOREM 6.1. Suppose there exists a function g: ( — oo, 0]-»[l, oo) satisfying

(glHg3) such that

(0

\f(-s)\g(s)ds<l
=1 J-oo

and

(ϋ)

' = 1

\h(-s)-af(-s)\g(s)ds

\A-s)\g(s)ds• ] •
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Then each solution x(t) of (1.3) through φeCg with lims^_oo\x0(s)\/g(s) = 0 tends to a
constant as /->oo.

PROOF. Let x(t) be a solution of (1.3) through φeCg with lims^ _ „ \xo(s) \/g(s) = 0.
By Corollary 3.1 there exists a constant M> 0 so that | x(t) \ < M for all ί > 0. By Theorem
2.1, the set {x,: />0} is precompact in Cg.

Now choose a sequence ίn-»oo so that |x t n — φ \c -+0 as «-+oo, where φeω{φ). Let
z(ί) be the solution of (1.3) through φ, then the function y(t) defined by

» r>
y(t) = z(ί) - £ 6,.z(ί - r.) - f(t - i

i=l J-oo

tends to a.constant c as ί->oo according to Theorem 4.2. Thus z(ί) tends to a constant
c* by Theorem 5.1.

For any ε>0, by Corollary 3.1 there exists <5>0 so that | φ — φ \c <δ implies that
I x(ί; φ)-x(t; φ) I <ε/2 for ί>0. For this given δ>0 find N>0 so that fjcίn-^ |C f f<5 for
all n>N. Then

I x(ί; xίn) - x(ί; ̂ ) | = | x(ί + tn) - z(t) \ < y

for all t>0 and for all n>N. On the other hand,

| z ( ί )_c*l<_i

for all t>Tx. This implies

for all t> Tx and /i>ΛΓ. Therefore

for all t> T1-\-tN. This shows limf^oox(ί) = c*, which completes the proof. •
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