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On J. R. Haddock's Conjecture 

Communicated by R. P. Gilbert 

Jianhong Wu 

Department of Mathematical Sciences, Memphis State University 

Memphis, T N  38152, U.S.A. 

Abstract In this paper we prove the following conjecture of J.R. Haddock: each 

solution of the following neutral equation 

d 
- [ z ( t )  - cz ( t  - r ) ]  = - F ( z ( t ) )  + F ( z ( t  - r ) )  
dt 

tends to a constant, if F : R + R is continuous and increasing, 0 < c < 1. 

KEY WORDS: Convergence, neutral equations. 

(Received for Publication 24 March 1988) 

1 .INTRODUCTION. 

In this paper, we give a proof of the following J .  R. Haddock's conjecture ( [ I ] ) :  

Conjecture: If o < c < 1 and 7 > 0 is a quotient of positive odd integers, then 

each solution of the following equation 

d 
- [ z ( t )  - cz ( t  - r ) ]  = - a z r ( t )  + az7z ( t  - r ) ;  a 2 O,r > 0 dt ( 1 )  

tends to  a constant as t  + oo. 

In fact, we will prove that the same conclusion holds for the following more 

general equation 

d 
- [ z ( t )  - cz ( t  - r ) ]  = - F ( z ( t ) )  + F ( z ( t  - r ) ) ,  
dt 
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128 JIANHONG WU 

where F : R 4 R is increasing and continuous, that is, we prove the following 

Theorem: Each solution of the equation (2) tends to  a constant as t 4 co. 

2.Lemmas 

In this section, we will establish three important lemmas to be used to prove our 

main theorem. 

Lemma 1. Let c > 0 and 

A; = maz;r<t<(i+l)rmaz{(l - - - c)z(t), z(t) - cz(t - r)). 

Proof: By way of contradiction, if this is not true, then there exists an integer m so 

that Am < Am+1, that is, 

Let am+l  E [(m + l)r ,  (m + 2)r] so that 

Then we have only two cases 

Case 1: Am+l = (1 - ~ ) ~ ( a m + l )  > z(am+l)  - C Z ( ( Y ~ + ~  - r). 
In this case, we have 

z(am+l) I z ( a m + ~  - r), 

and therefore 

which is contrary to  the assumption Am < Am+1. 

Case 2: Am+l = z(am+l) - cz(am+l - r)  2 (1 - c ) c ( ~ ~ + I ) .  

In this case, we have 
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ON J. R. HADDOCK'S CONJECTURE 

and thus if am+l < ( m  + 2)r ,  then a t  t  = am+l we have 

d  
--[z(t) - cz ( t  - r ) ]  = 0 .  
dt 

This means 

- F ( z ( a m + ~ ) )  + F(z (am+l  - r ) )  = 0 ,  

This implies 

which is contrary to the assumption A,+1 5 A,. So am+l  = ( m  + 2)r  and 

If there exists r  E [ ( m  + 2)r ,  ( m  + 3)r )  such that 

and at  t = r ,  we have 
d  
- [ z ( t )  - cz ( t  - r ) ]  = 0 ,  
dt 

then 

- F ( z ( r ) )  + F ( z ( r  - r ) )  = 0 ,  

and thus 

z ( r )  = z ( r  - r)  

This implies 

z ( r )  - c z ( r  - r )  = ( 1  - c ) z ( r -  r )  5 &+I. 
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130 JIANHONG WU 

On the other hand 

d  
( t )  - ( t  - r )  > 0 for t E [ ( m  + 2)r ,  r )  

implies 

which is contrary to ( 3 ) .  Therefore on the interval t  E [ ( m  + 2)r ,  ( m  + 3 ) r )  we have 

d  
- [ z ( t )  - cx( t  - r ) ]  > 0, 
dt 

and thus 

This implies 

Am+2 > A m  + 1 .  

Using the same argument as above we can prove that 

and 
d  
- [ z ( t )  - c z ( t  - r ) ]  > 0 
dt  

for t  E [(m + 2)r,oo). Then at t  = (m + 3 ) r  we have 

d  
- [ z ( t )  - c z ( t  - r ) ]  > 0.  
d t  

This means 

- F ( z ( m  + 3 ) r ) )  + F ( z ( ( m  + 2 ) r ) )  > 0 ,  
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ON J. R. HADDOCK'S CONJECTURE 

and thus 

z((m + 3)r) < z((m + 2)r). 

This implies 

This is contrary to 

d 
-[z(t) - cz(t - r)] > 0 on [(m + 2)r, (m + 3)rl. 
dt 

So, there exists no integer m so that Am < Am+l, and thus 

This completes the proof. 

Similarly, we can prove 

Lemma 2. Let c > 0 and 

B; = minir<t<ci+l)rmin{(l - - - c)z(t),z(t) - cz(t - r)). 

By Lemma 1 and Lemma 2, we can assert that all solutions of (2) are bounded. 

Lemma 3. Let z : (-r,oo) -+ R is a bounded continuous function with 

limt,,[z(t) - cz(t - r)] = d 

exists, then limt,,z(t) exists and 

D
ow

nl
oa

de
d 

by
 [

Y
or

k 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

2:
53

 0
9 

N
ov

em
be

r 
20

15
 



132 JIANHONG WU 

Proof: Let I z ( t )  1 5 M for all t 2 -r and for a constant M > 0 .  For any c > 0 ,  

there exists an integer N = N ( E )  > 0 so that for n 2 N we have 

Let y( t )  = z ( t )  - c z ( t  - r )  and l imt+wy( t )  = d. By the assumption there exists 

TI ( E )  > 0 SO that 

y ( ) - l c  f o r t > T l ( r ) .  

Therefore for any t > T I ( € )  + [ N  + l ] r ,  we have 

d  
= l y ( t )  + c z ( t  - r )  - -1 

1  - c  
2 d  = l y ( t ) + c y ( t  - r )  + c  z ( t  - 2 r )  - -1 

1  - c  
- - ...... 

d  
= Iy( t)  + cy( t  - r )  + ... + c N y ( t  - N r )  + c N + l z ( t  - ( N  + 1) r )  - -1 

1  - c  
= l y ( t )  - d +  c[y( t  - r )  - d] + ... + c N [ y ( t  - N r )  - dl 

d  + p + 1 -  
1 - c  

+ cN+lz ( t  - ( N  + 1)r)I 

i l y ( t )  - dl + Iclly(t - r )  - dl + ... + / c ~ ~ ~ y ( t  - N r )  - dl + I c I N + ' l d l  + I,.IN+IM 
1 - c  

This completes the proof. 

The following two lemmas are taken from [2,  Proportion 4, Propertion 51. 

Lemma 4: Consider now the ordinary differential equation 

where A is a constant and 6 is a parameter with 0 5 c 5 1 ,  and the initial condition 
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ON J. R. HADDOCK'S CONJECTURE 133 

Let u(t) = u(t;to,c) be the solution of the initial value problem (4)-(5), and a > 0 
be a given constant. Then there exists a positive constant p independent of to and 6 

such that 

( A  + 6 )  - u(t; to, 6 )  2 p > 0 for t E [tO,tO + a]. 

Lemma 5. Consider the ordinary differential equation 

where A is a constant and c is a parameter with 0 5 6 5 1 ,  and the initial condition 

Let u(t) = u(t;to,r) be the solution of the initial value problem (6)-(7), and a > 0 

be a given constant. Then there exists a positive constant v independent of to and € 

such that 

u(t; to, 6 )  - ( A  - c) 2 Y > 0 for t E [to, to + a] .  

3.Proof of the Main Results 

Now we are in the position to prove our main theorem. 

Proof of Theorem: By Lemma 1 ,  we know 

By Lemma 2, we know that 

B = limt,,in f min{(l - c)z( t ) ,  z ( t )  - cz(t - r ) )  = lim,,, En > -m. 

Therefore 

- m : , B ~ A ~ + c o .  

Let 

E = limt+,in f maz{(l  - c)z(t) ,  z ( t )  - cz(t - r ) ) .  

If E < A, then we can find a constant H E (E, A) and an increasing real number 

sequence {rm) so that rm E [mr, ( m  + l )r]  := Im and 

maz((1- c)z(rm), z(rm) - cz(rm - r ) )  = H. 
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134 JIANHONG WU 

and SO if t  E [rm, rm + 2r],  then 

This implies 

Now on the interval [rm, Tm + 2r],  define 

If z ( t )  < z ( t  - r ) ,  then 

and thus 

This implies 

y( t )  = - F ( z ( t ) )  + F ( z ( t  - r ) )  

If z ( t )  2 z ( t  - r ) ,  then 

y( t )  = - F ( z ( t ) )  + F ( z ( t  - r ) )  

< 0 - 
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ON J. R. HADDOCK'S CONJECTURE 

and so on the interval [rm, rm + 24, we always have 

By Lemma 4, there exists a constant p > 0 so that 

where u(t; rm, H )  is the solution of the following initial value problem 

Using the usual comparison principle, we obtain 

and thus 

A + r m - y ( t ) 2 p > 0  f o r t ~ [ r , , r ~ + 2 r ] .  (8) 

On the other hand, on the interval [rm,rm + 2r] E Im U Im+l U Im+2, we have 

and thus either 

(A) there exists r E [rm, rm + 2r] so that y(r) 2 Am+2, or 

(B) (1 - c )x (~ )  2 Am+z for all t E [rm, rm + 2r]. 

In case (A), from (8) we get 
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136 JIANHONG WU 

In case (B), we have 

and so using the following equality 

Am- 1 x(t - r) 5 - 
1 - c '  

we obtain 
Am-1 Am+2 - c-. (t) = z(t) - cz(t - r) > - 

1 - c  1 - c  

Substituting the above inequality into (a), we get 

that is 

Combining (9) and (lo), we get 

The inequality above holds for all m > 2. This is contrary to limm,,Am = A. 

So E = A. That is 

limt,,maz{(l - c)z(t),z(t) - cz(t - r)) = A 

exists. Similarly, 

exists. Therefore 

limt,,{(l - c)z(t) + z(t) - cz(t - r)) = A + B 

exists. That is D
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ON J. R. HADDOCK'S CONJECTURE 137 

exists. Obviously I & [  < 1 and so limt+,z(t) exists by Lemma 3. This completes 

the proof. 
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