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Abstract. We show that each precompact orbit of strongly monotone dynam-

ical systems on a Banach lattice X is convergent if there is a continuous map

e: X —» E , the set of equilibria, such that e(x) is the maximal element in E

with e(x) < x . This result can be applied to study the convergence of a class

of functional differential equations and partial differential equations.

Monotone dynamical systems have a strong tendency to converge to the set of

equilibria. Under some compactness assumptions, Hirsch [3] shows that gener-

ically positive semiorbits are quasi-convergent, i.e. asymptotic to the set E of

equilibria. Therefore, when the set of equilibrium points has no accumulation

point, almost every orbit is convergent, i.e. asymptotic to some equilibrium

point. However, some application problems do generate dynamical systems

whose equilibrium point sets have accumulation points, and therefore quasi-

convergence does not imply convergence. Simple examples are the following

functional differential equation

(1) x(t) = -f(x(t)) + f(x(t-r))

describing a compartmental system with one pipe, the motion of a classically

radiating electron, epidemics and population growth, where r > 0, f:R —» R

is continuous and increasing; or the following partial differential equation

— = Au + g(x , «,V«),       t>0,xEQ

(2) u(x,0) = v(x),       xeQ,

™±Jl = 0,      *€oQ,r>0
dn

where Q is a bounded smooth domain in R", A is a second-order uniformly

elliptic differential operator and g:Q x R x Rn —> R is locally Lipschitz and

satisfies g(x,c,0) = 0 for any x E il and c E R, du/dn is the derivative

of u in the direction of the outward normal to Q. For these equations, each
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constant function is a solution, the set of equilibria has accumulation points,

and thus quasiconvergence can tell us nothing about asymptotic behaviors of

solutions but boundedness.

In this paper, we announce some convergence criteria for strongly monotone

dynamical systems whose set of equilibrium points possesses a minimal or stable

property. We will also present some examples to show how to apply our results

to functional differential equations and partial differential equations which have

infinitely many equilibrium points.

Let X be a Banach lattice such that (X, <, \\ • \ |) has order-continuous norm.

A dynamical system O = {<t>t}t>0 on X is monotone, if y > x and t > 0 imply

</>,(v) > <t>t(x). A monotone dynamical system 0 = {<fit}t>0 on X is eventually

strongly monotone if there exists a constant T > 0 such that y > x and t>T

imply <pt(y) > </>t(x).

Let y+(x) = {(¡>t(x);t > 0} denote the positive semiorbit of jc, to(x) be

the («-limit set and E be the set of all equilibrium points, that is, E = {x E

X;<f>t(x) = x for all t > 0} . A point x E X (or equivalently, the orbit y+(x))

is convergent if lim(_>oo <f)(t, x) exists and the limit is in E. The following

minimal property is essential throughout this paper.

Definition 1. A closed subset MEE possesses minimal property with respect

to a positive invariant subset U if, there exists a continuous function e: U —►

MnU so that

(1) x - e(x) eX+- IntX+ for any xeU ,

(2) if y E M and y < x, then y < e(x).

Theorem 1 (Convergence criterion with minimal property). Suppose that

{<¡>,}t>0 is an eventually strongly monotone dynamical system, a closed subset

M of E possesses minimal property with respect to U. Then any precompact

orbit y+(x) through xeU is convergent, and lim^^c^r,*) EM.

Sketch of Proof. Let a positive constant T be given so that <fi(t,y) » (¡>(t,z)

for any y , z e U with y > z and for all t > T. Let ei = e(4>(iT ,x)). Then

e¡ < tj>(iT ,x). If c, t¿ <j)(iT ,x), then

c,. - <KT,e,) « 4>(T,4>(iT,x)) = m + \)T,x)

and thus ei < ei+x. Therefore by induction we get the following increasing

sequence

e0 < ex < e2 < e3 < ■ ■ ■

Therefore lim^^ ek = ê exists by the order-continuity of the norm. Let y E

to(x). Then we can find an unbounded increasing subsequence {kn}°^=x of non-

negative integers and a sequence {t8}^,j in [0,T] so that 4>(knT + xn ,x) —>y

as n-»oo. Without loss of generality we may assume that xn —> x e [0, T] and

<f>(knT,x) —* z as n-»oo. Therefore from continuity of semiflows, it follows

y = tj)(x,z). Note that ek < <f>(knT,x). By the closeness of order relation, we

get ê < z and thus ê < tf>(x ,z)=y. That is ê < to(x). By invariance of to(x),
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we can find an element w e co(x) so that <f>(x + T,w) = z . If w ^ ê, then by

eventually strong monotonicity we have ê = <j)(x + T,ê) «c 4>(x + T,w) = z.

That is z - ê E IntA"+ which implies that $(knT,x) - e(<f>(knT,x)) E IntX+

for sufficiently large n , a contradiction to our assumption. Therefore w = ê,

and thus z — <fi(x + T,ê) = ê. Hence y = $(x,ê) = ê. This shows to(x) =

{ê}CMCE.
A simple example is the following two-dimensional compartmental system

with pipes

-77*1 (0 = -¿?ii(*iW) - Szi^iW) + Sii(*iC - rn)) + 8n(x2(t - rx2))(3)      aJ

¿¡x2^) = *2iW - r2i)) + S22W - r22)) - SniXiW) - ^22(X2(0)

where g^'-R —► /? are Lipschitz continuous and increasing with g¡¡(0) = 0,

and lim., ^ |^ (j)| = 00, r. > 0 are constants for i,j — 1,2. By emply-

ing standard comparison technique and adopting a similar argument to that in

Gyori [1] and Smith [5], we can prove the solution flow defined by equation (3)

defines an eventually strongly monotone semiflow on P = C([-rx, 0], 0,00)) x

C([-r2,0], [0,00)) where r. = max{rh , r2i} , i = 1,2. It is clear that the set

E of equilibrium points contains the following set of constant functions

M = {(cx ,c2);(cx,c2) ERxRand g2x(cx) = gl2(c2)}

where c, is a constant function on [—r¡, 0] with the value c( e R. By con-

structing a function e: P -* M ç E as following

e(<J>xA1) = {
lfijS!l«*>(*)^f»*u(j&!^í,))

We can verify that the set A/ possesses minimal property. Therefore by Theo-

rem 1, any orbit y+(<f>x ,</>2) through (<f>x ,(f>2) E P is convergent.

As an immediate consequence of Theorem 1, we get the following sufficient

condition for asympotic constancy:

Corollary (Asymptotic constancy criterion). Suppose I is a compact topological

space or a smooth compact n-dimensionoal submanifold of Rn, CT(I) denotes

the Banach lattice of Cr maps U:I —► R such that U and its derivatives of

order < r are continuous, endowed with the usual Cr norm and the usual func-

tional ordering. Suppose {(pt}l>0 is an eventually strongly monotone dynamical

system on Cr(I) and the set of equilibrium points contains all constant functions.

Then each precompact orbit converges to a constant function as t —► 00.
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Sketch of Proof. Let

M = {c ; c E R and c denotes the constant function on / with the value c}.

By assumption M ç E, the set of equilibria. Evidently, M possesses the

minimal property with respect to C(I) since the map e: Cr(I) —* M defined

e(u) = minu(x)
x€l

satisfies the conditions in Definition 1. Therefore our conclusion follows triv-

ially from Theorem 1.

According to the above criterion, each solution of the functional differential

equation (1) or partial differential equation (2) is convergent.

The following theorem, based on the general quasiconvergence criterion by

Hirsch [3], provides another sufficient condition for convergence.

Theorem 2 (Convergence criterion with stable equilibria). Suppose that {<ßt}[>0

is an eventually strongly monotone dynamical system such that each orbit is

precompact and upper stable, and that any equilibrium point is stable. Then any

orbit is convergent.

Here and hereafter, an equilibrium point x E X is stable if for any given e

there exists S = ô(e, x) > 0 such that y+(y) ç U£(x) for any y E Us(x), where

Ue is the e-neighborhood. An orbit y+(x) is upper stable if for every e > 0 there

exists ô > 0 such that if y > x and d(y,x) < ô, then d(cp(t,y),(j)(t,x)) < e,

where d is a metric defining the order topology of X.

Sketch of Proof. Let y+(x) be a fixed orbit. Employing the argument of [3,

Theorem 8.3] we can prove that y+(x) is convergent to to(x) ç E. Therefore

our conclusion follows trivially from the stability of each equilibrium point.

As an illustrating example, we consider an «-compartmental system with

pipes described by the following functional differential equation

j n n

¿7*,(0 = - £ «)i(*/(0) + £ *//*/' - rij)) >     » = i..... «
j=\ 7=1

where g ¡Au) is monotone increasing, continuous and locally Lipschitz with

8ij(Q) - 0- The phase space is chosen as C = C([-rx ,0],[0,oo)) x ••• x

C([-rn ,0], [0,oo)) where r¡ = max., n r.¡. It has been proved that for any

(<f>x, ... ,4>n) E C there is a unique non-negative solution on [0,oo) which

satisfies the following law of energy

E¡=i
n      -t

*,(') + £/     8iMj(s))ds
,_, Jt-r,¡

— const

for all t > 0. Moreover, in Wu [6], we proved that the semiflow defined by the

above equation is eventually strongly monotone and the law of energy implies

the upper stability of any non-negative orbit, the stability of equilibrium points

and precompactness of any orbit in C. Therefore as an immediate consequence
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of Theorem 2, we can assert that any orbit of compartmental systems with pipes

is convergent.
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