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We shall associate the linear neutral Volterra integrodifferential equation

%[x(t) —f’ Clt=s) x(s) ds g(t)] =Ax(z)+f'  Glt—s) x(s) ds + £(1)
(1)

with

i [x(t) — f’ C(t—5) x(s) ds — g(r)} = Ax(1)+ f' G(r—s) x(s)ds+ f(1)
dt 0 0

(2)
via the resolvent equation
d ¢ '
—[Z(t)—f C(t—5) Z(s) ds] =AZ(z)+j G(1 —s) Z(s) ds
a ° ° (3)

Z0)=1

Here and hereafter, C(¢) and G(r) are n x n matrices continuous for ¢ =0
g(t) and f(r) n-vectors continuous for te R with f(¢t+ T)=f(+) and
g(t+ T)= g(z) for a constant 7>0, A4 a constant n x » matrix, / the nxn
identity matrix, and Z an » x n matrix.

In the case where C(z)=0 and g(1)=0, T. A. Burton [1, Theorem 5]
proved that for any bounded solution x(¢) of (2) there exists an integer
sequence n, — co (as j— o) such that x(7+n,T) converges to a solution
x*(z) of (1), which, if Ze L'[0, o), is T-periodic and has the following
nice formula, x“‘(t):j’_OC Z(r—s) f(s)ds (see [2, Theorem 1.1]). Similar
results can be found in [3] for the case g(¢) =0 under the assumptions
ZeL'[0, o0) and lim, _ _, Z(t}=0. However, [3] had not gotten sufficient
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GLOBALLY STABLE PERIODIC SOLUTIONS 475

conditions to ensure Ze L'[0, c0) and lim, , _ Z(¢)=0. In [4], the dis-
cussion of the T-periodic solution of (1) (in the case g(¢)=0) depended
heavily on the behaviors of solutions of the integral equation
h(t)= {4 C(1 - 5) h(s) ds + f(¢).

The present paper is an extension of [ 1-4]. Using the variation of con-
stants formula for (2), we prove that if Z, Ze L'[0, o0), then there exists a
unique globally stable T-periodic solution g(z)+f* Z(t—s) g(s)ds+
§ . Z(t—s5) f(s) ds. Some sufficient conditions ensuring Z, Ze L'0, o)
are also given.

The following variation of constants formula generalizes [2,
Theorem 1.1] to neutral equations.

THEOREM 1. There exists an n x n continuously differentiable matrix Z(t)
satisfying Eq. (3) with initial value Z(0)= 1. Moreover, any solution x(t) of
(2) can be represented by

x(t) = Z(O[x(0) = g(0)1+ (1) + §5 21 —s) gs) ds + | Z1=3) f(5). (@)

Proof. The existence of the solution Z(t) of (3) with initial value
Z(0) =1 follows from the fundamental theory of neutral functional differen-
tial equations with infinite delay (cf. [5, 6]). Equation (3) with initial value
Z(0)=1 is equivalent to

Z(t)=1+'f’E(t—s) Z(s) ds,

where E(f)=A+ C(1)+[5G(v)dv. Tt is easy to verify that Z(1)=
I+ M(s)ds with M(t) being the solution of M(t)=E(1)+
{5 E(t —5) M(s) ds, and so Z(t)= M(t) is continuous. On the other hand,
Eq. (2) is equivalent to

x(1) = x(0) — g(0)+ g(0) + [ f(s) ds + [ E(1—s) x(s) ds.
0 0
By a direct verification, we get

x(1) = x(0) = g(0) + g(1) + [ f(s) ds-+ [ Ml1—s)

4 £3(0)~ (@1 + g05) + [ lw i} as

409/130:2-12



476 JIANHONG WU
=x(0) - g(0)+ g(0)+ [ fis)ds+ | Z(t-5)
x [x(O) — g(0)+ g(s) + L flw) du] ds
= Z()[x(0) ~ £(0)] + £(1) + || Z(1=5) 5(s) ds

+f'2(z~s)f(s)ds
0

This completes the proof.

Following the similar argument to those of [2, Theorem 1.1; 4,
Theorem 2; 7, pp. 171-178], we get

THEOREM 2. Suppose C,Ge L'[0, c0). Then for any bounded solution
x(2) of (2), there exists an integer sequence n;— oo as j— oo such that
x(t+n;T) converges to a solution of (1) on (— o, + o) and the convergence
is uniform on any compact subset of (— o0, +o0).

THEOREM 3. If C, G, Z, Ze L'[0, w0), then (1) has a T-periodic solution
g(t)+_fLw Z(t—s) g(s) ds+j1w Z(t—s) f(s)ds, and all solutions of (1)
defined for t =0 with bounded continuous functions on (—o0,0] as their
initial values tend to this T-periodic solution as t — .

Proof. Z,Ze L'[0, o) implies that lim, . , Z(¢)=0. Therefore by (4)
all solutions of (2) are bounded. On the other hand,

x(t+n,Ty=Z(t+n,T)[x(0)— g(0)] + g(2) + JH’UT Z(t+ nT—s)g(s)ds
0
1+ nT
+j Z(t+n,T—s) f(s) ds
0

= Z(t+m,T)[x(0)~ gO)1 + g()+ | Z(1—5) g(s) ds

'
—-nT

+f' Z(1—s) f(1) ds

—nT
——»g(t)+‘r Z(t—s) g(s) ds+J Z(t—s) f(s)ds, as j— o0.
By Theorem?2, g(t)+ ", Z(t—s)g(s)ds+[" . Z(t—s)f(s)ds is a
solution of (1). Obviously, it is T-periodic.

Suppose x(¢) is a solution of (1) defined for ¢>0 with initial value
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X, =@, where @ is a continuous bounded R"-valued function defined on
(— o0, 0]. Then from

d t 0
7 [x(t) - L C(t—s) x(s)ds— g(t)— Lw C(t —s) o(s) ds}
0

=Ax(z)+f' G(r—s)x(s) ds+ [ Glt—s) ols)ds+ f()
0 o]
and by Theorem 1, we get

x(1)=Z(1) [x(O) —ﬁ ‘ C(—s) o(s) ds— g(0)] + g(1)

0
+[ C(t=5) ols) ds

+j0 Z(t—s) [g(s)+ jo C(s ~ u) p(u) du] ds

t 0
+j Z(t—s)[f(s)+j G(s—u)q)(u)du:\ ds.
0 —oc
The boundedness of @ and Ce L'[0, oo) imply [® C(—s)p(s)ds is a

bounded real number, [° . C(t—s)o(s)ds={}" Cu)p(t—u)du—0,
[ G(t—5) @(s) ds={;= G(u) (t —u) du » 0 as 1 —» 0. These show

g Z'(z—s)jo

Cls~u)pu)duds—>0

and

J[ Z(t—s)f0 G(s—u)o(u)duds -0 as - .
0 -

- oo

On the other hand,

r’ Z(t—s) g(s)dsgj+°°|z‘(u)l dv- max |g(s)| —0
— t 0<sgT
" zu-syssrds<| " 1zw) do- max 1(s) >0

— o0 €5 <

as ¢t - co. Therefore,

X0~ g(0)~ [ Ze=s) gyds—|

Z(t—s) f(s)ds >0 as 1 — o0,

This completes the proof.
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So the key to prove the existence of a unique globally stable T-periodic
solution for (1) is to verify Z and Ze L'[0, o). In the remainder of this
paper, we shall give some sufficient conditions ensuring them.

Lemma L If [ |C(1)|de<]1, then lim,_  [Z(1)— [t Clz—5)
Z(s) ds]=0 implies lim,_, ., Z(t)=0.

Proof. The continuity of Z(r) and lim, , ,[Z(¢)— [, C(t—5)
Z(s)ds]=0 imply the existence of a constant N> 1 such that |Z(r)—
o C(r—3s), Z(s)ds| < N. If there is a u>0 with |Z(u)| =MaXg ¢ <y | Z(5)],
then

1Z(u)] < j |C(u—s)| |Z(s)| ds+ N

<| 7 ic)ds 1z + N
0
and thus
1Z(u)| sN/[1 ~ [ 1cw) ds] M.
0

This shows that |Z(r)] < M for 1>0. For any >0 choose h sufficiently
large so that

+
h

|D(z)|+j “ICs) dsM<e  for t2h,

where D(1) = Z(t) — [§ C(t — s) Z(s) ds. Therefore for ¢ > h, we have

Zwi<] 1Ct-s) |z ds+ ] IC(—5)] dsh+1Dlr)

0
<e+f+°° C) dr- max_|Z(s).
0 [~h<s<t

<s

Choose ¢, €1, = [nh, (n+ 1) h] so that |Z(¢,)| =max,.,, |Z(t)|, then

e+ JHO |C(2)| dt | Z(t,_ ), if there exists we [ 1, — h, nh]
0 with |Z(x)| = max J[Z(t)l

telty—Hhtn
1Z(1,) < e | |
e+ [ TICWIdriZ()), i max |Z(s)]
0 selty—hin]
= max |Z(s).

se[nh 1,]
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Therefore if |Z(¢,_ )| <&/[1—=|F=|C(¢) dt], then |Z(t,) <¢e/[1—-

¢® |C(1)| di], and thus |Z(t,)| <é&/[1—[§= |C(1)| dt] for all kzn—1,
and if |Z(t,) >¢/[1—[¢= |C(1)| dt], then |Z(1,) <e+ [ |C(r)] dt
|Z(t,_,)|. This implies that either there exists a positive integer K such that
IZ() <e/[1—f¢= 1C() dr] for 12Kh or |Z(1,)<e+[g=|C(1)l dt
1Z(t,_ ;)| for n=1, 2, ... If the latter case occurs, then

Z(1)| < e[1+j |C(z)dz+---+(j+°°|cu)|dz>"}

+([ icona) 1z

<e/[1 -[ 1C(t)|] dr+(j0+°° IC(0) dt)"“M.

Therefore these two cases imply lim,_  Z(1)=0, since ¢ is sufficiently
small. This completes the proof.

LemMA 2. If (¢ |C(t)| dt<1 and Ge L'[0, o) then Z(t)— [y C(t —s)
Z(s)dse L'[0, o) implies Z, Z e L'[0, ).

Proof. Let D(t)=Z(1)— [, C(t—s) Z(s) ds. Then Z(¢) is a fixed point
of the mapping 7 defined by (TZ)(r)=[; C(r~s)Z(s)ds+ D(t) for
ZeL'[0, ). It is easy to verify that T maps L'[0, o) into itself with

rw (TZ - TZ)(1) di
=j0+°° j; (= 5)| [ Z(s) — 2(s)]| ds dr

<J |dzj \Z(t) = Z(1) dt for Z, Ze L'[0, ),

that is, T is a contraction mapping from L'[0, c0) into itself. Therefore
T has a unique fixed point in L'[0, o), that is, Ze L'[0, ®). Z is
continuously differentiable, so (3) is equivalent to

Z'(t)= L C(s) Z'(t— s) ds+ C(t) + AZ(t) + [} G(t —5) Z(s) ds.

Using the same argument as above we get Z' € L'[0, o). This completes
the proof.

For the case where (3) is a scalar equation, we have
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THEOREM 4. Suppose that [§= |C(1)| dr <1,

§*®|AC(t) + G(¢)] dt
L= Jo = |C(2)l dt

+A=0<0,

Then Z,Z, De L'[0, o), lim
Z(t)— [4 C(z —5) Z(s) ds.

Z(1)=0, lim D(t)=0, where D(t)=

> o0 = c

Proof.  Let
F(1)=14C(1) + G(1)]

+(f+°° |AC(1) + G(1)] dt/(l —LM 1C()] dz)) IC)l

0

and

V1, Z,) = 'Z(t) —j' Clt—5) Z(s) ds

+L’f+°° Flu—s) du |x(s)| ds.

t
Rewriting (3) as

d

= [Z(t) - jo Clt—s) Z(s) ds]

iy [Z(t) _ f Clt—5) Z(s) ds] + f [AC(t—s5)+ Gt —s)] Z(s) ds,
we get

W, Z,)< A lzm—j' Ct—s) Z(s) ds
0

+ f |AC(t— 5)+ G(t — 5)| |Z(s)| ds
0

o[ Fu— 0 du1Z(0) —f' Fli—s)12(s)] ds
I3 0

<A lzm-j' Clt —5) Z(s) ds
1]

+ ft JAC(t — s)+ G(t — s)| | Z(s)] ds
o

+ f:w F(u) du

Z(t)—jo' Clt - 5) Z(s) ds
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+ fm Flu) du [ |C(e~ )| 1Z(s)] ds——r F(t—s) | Z(s)| ds
)] 0 0

<

[ F1AC(1) + G(1)| dt

~fg=IC(n)dr A] 'Z(f) ~f0 C(r ~s) Z(s)ds

Therefore

0< V1, Z,)< VO, ZO)—af \D(s)| ds,

which implies g |D(s)| ds < (1/a) V(0, Z,). That is, DeL'[0, o), and
thus Z, Z'€ L'[0, «v) by Lemma 2, which implies lim, ., Z(1)=0 and
lim, _ ,, D(t1)=0. This completes the proof.

For the general n-dimensional equation (3), we have

THEOREM S. Suppose that A is a stable matrix, B is a positive definite
nxn matrix with ATB+ BA= —1, and a, f are positive constants with
a2xTx <xTBx < P2xTx. If [ < |C(1)) de < 1,

&+ |BAC(t) + BG(¢)| dt PRt
o[ 1=fg=|C()d] 28

then Z,Z,DeL'[0, ), lim,_ . D(t)=0 and lim,_ Z(t)=0, where
D(t)=Z(1)— [§ C(t —s) Z(s) ds.

Proof. Let

f& = |BAC(t) + BG(1)| dt

K== 1cwn ar]

|C(D) + ]BAC(t) + BG (1))

and

, T
V(t,x,)={{x(t)—J.0 C(t—s)x(s)ds] B[ (t)«[ (t—s)x(s)ds]}

+£:fo K(u— s) du |x(s)| ds,

/2

where x(t) is a solution of

%[x(t) — J: C(t—5) x(s) ds] = Ax(t) + j: G(t—s) x(s) ds.
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Then
Vi, x,)
_ [Ax(1) + [ G2 —5) x(s) dsT" B[ x(¢) — [§ C(t —5) x(s) ds]
—2{(x(t)—Jb C(t — 5) x(s) ds1TB[x(t) — [ C(t— s) x(s) ds]} '
[x(2) — f& C(t — ) x(s) ds1" B[ Ax(1) + [ G(t — 5) x(s5) ds ]
2[{x(t) =[5 C(t —5) x(s) ds1"B[x(t) — [§ C(t = 5) x(5) ds]} "

+®
+f K(u—1) du

x(1) —jo K(1—s) |x(s)| ds

= [x() =[5 Clr =) x(s) dsTT[x(2) — [§ C(t — 5) x(s5) ds]

2{[x(t)— [ C(t — 5) x(s) ds1TB[x(2) — [} C(t — 5) x(s5) ds]} "
[x(1)— 4 Cr—s)y x(s) ds]"B {§ [AC(¢ —5) + G(¢ — 5)] x(s) ds
{[x(t)— [ C(r—5) x(5) ds 1" B[ x(z) — [ C(t — s) x(s) ds ]}

+f0+°0 K(u) du

x(z)—jo' Clt—5) x(s) ds

¥ f K(u) du fo |C(1 = $)| |x(s)] ds—jm K(t—s) |x(s)| ds

< — [flﬂ‘“j;w K(u) du]

+1j' |BAC(t — 5) + BG(1— 5)| |x(s)| ds
o Yo

x(t)—jo' Clt—s) x(s) ds

+f+°° K(u) du j IC(1 = s)| |x(5)| ds—f K(t—s) |x(s)| ds
0 0 (1)

_ _[ I )¢ |BAC(1) + BG(1)] dt]
2 a[1— 3 |C(1)] dt]
The remainder of the proof is the same as that of Theorem 4 and so we
leave it to the readers.

Remark. Making a change of variable x(¢)= y(¢) + k(¢), where k(7) is
the unique T-periodic solution of the following integral equation

x(t)—J.O’ C(t—s) x(s) ds

k(z)=j' Clt—s) k(s) ds + (1), (5)

Equation (1) is equivalent to

d ! t
Zr0-T co—9s0a1=a+ | Ga—ss e s
6)



GLOBALLY STABLE PERIODIC SOLUTIONS 483
with
FH0=f(0)+ 4k + ] Gle—s5)k(s) ds (7)

Therefore, by Theorem 3, (1) has a T-periodic solution

K+ [ Z(~s) r¥(s) ds

— 00

provided that C, G, Z, Ze L'[0, ).
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