Globally Stable Periodic Solutions of Linear Neutral Volterra Integrodifferential Equations

JIANHONG WU

Department of Mathematics, Hunan University, Changsha, Hunan, People's Republic of China

Submitted by V. Lakshmikantham

Received August 1, 1986

We shall associate the linear neutral Volterra integrodifferential equation

$$\frac{d}{dt}\left[x(t) - \int_{-\infty}^{t} C(t-s) x(s) ds - g(t)\right] = Ax(t) + \int_{-\infty}^{t} G(t-s) x(s) ds + f(t)$$
(1)

with

$$\frac{d}{dt} \left[x(t) - \int_0^t C(t-s) \, x(s) \, ds - g(t) \right] = Ax(t) + \int_0^t G(t-s) \, x(s) \, ds + f(t)$$
(2)

via the resolvent equation

$$\frac{d}{dt}\left[Z(t) - \int_0^t C(t-s) Z(s) ds\right] = AZ(t) + \int_0^t G(t-s) Z(s) ds$$

$$Z(0) = I.$$
(3)

Here and hereafter, C(t) and G(t) are $n \times n$ matrices continuous for $t \ge 0$ g(t) and f(t) n-vectors continuous for $t \in R$ with f(t+T) = f(t) and g(t+T) = g(t) for a constant T > 0, A a constant $n \times n$ matrix, I the $n \times n$ identity matrix, and Z an $n \times n$ matrix.

In the case where C(t)=0 and g(t)=0, T. A. Burton [1, Theorem 5] proved that for any bounded solution x(t) of (2) there exists an integer sequence $n_j \to \infty$ (as $j \to \infty$) such that $x(t+n_jT)$ converges to a solution $x^*(t)$ of (1), which, if $Z \in L^1[0, \infty)$, is T-periodic and has the following nice formula, $x^*(t) = \int_{-\infty}^t Z(t-s) f(s) ds$ (see [2, Theorem 1.1]). Similar results can be found in [3] for the case g(t)=0 under the assumptions $Z \in L^1[0, \infty)$ and $\lim_{t \to \infty} Z(t) = 0$. However, [3] had not gotten sufficient

conditions to ensure $Z \in L^1[0, \infty)$ and $\lim_{t \to \infty} Z(t) = 0$. In [4], the discussion of the *T*-periodic solution of (1) (in the case g(t) = 0) depended heavily on the behaviors of solutions of the integral equation $h(t) = \int_0^t C(t-s) h(s) ds + f(t)$.

The present paper is an extension of [1-4]. Using the variation of constants formula for (2), we prove that if $Z, \dot{Z} \in L^1[0, \infty)$, then there exists a unique globally stable T-periodic solution $g(t) + \int_{-\infty}^{t} \dot{Z}(t-s) g(s) ds + \int_{-\infty}^{t} Z(t-s) f(s) ds$. Some sufficient conditions ensuring $Z, \dot{Z} \in L^1[0, \infty)$ are also given.

The following variation of constants formula generalizes [2, Theorem 1.1] to neutral equations.

THEOREM 1. There exists an $n \times n$ continuously differentiable matrix Z(t) satisfying Eq. (3) with initial value Z(0) = I. Moreover, any solution x(t) of (2) can be represented by

$$x(t) = Z(t)[x(0) - g(0)] + g(t) + \int_0^t \dot{Z}(t-s) \ g(s) \ ds + \int_0^t Z(t-s) \ f(s). \tag{4}$$

Proof. The existence of the solution Z(t) of (3) with initial value Z(0) = I follows from the fundamental theory of neutral functional differential equations with infinite delay (cf. [5, 6]). Equation (3) with initial value Z(0) = I is equivalent to

$$Z(t) = I + \int_0^t E(t - s) Z(s) ds,$$

where $E(t) = A + C(t) + \int_0^t G(v) dv$. It is easy to verify that $Z(t) = I + \int_0^t M(s) ds$ with M(t) being the solution of $M(t) = E(t) + \int_0^t E(t-s) M(s) ds$, and so $\dot{Z}(t) = M(t)$ is continuous. On the other hand, Eq. (2) is equivalent to

$$x(t) = x(0) - g(0) + g(t) + \int_0^t f(s) \, ds + \int_0^t E(t - s) \, x(s) \, ds.$$

By a direct verification, we get

$$x(t) = x(0) - g(0) + g(t) + \int_0^t f(s) \, ds + \int_0^t M(t - s)$$

$$\times \left\{ \left[x(0) - g(0) \right] + g(s) + \int_0^s f(u) \, du \right\} ds$$

$$= x(0) - g(0) + g(t) + \int_0^t f(s) \, ds + \int_0^t \dot{Z}(t-s)$$

$$\times \left[x(0) - g(0) + g(s) + \int_0^s f(u) \, du \right] ds$$

$$= Z(t) [x(0) - g(0)] + g(t) + \int_0^t \dot{Z}(t-s) \, g(s) \, ds$$

$$+ \int_0^t Z(t-s) \, f(s) \, ds$$

This completes the proof.

Following the similar argument to those of [2, Theorem 1.1; 4, Theorem 2; 7, pp. 171–178], we get

THEOREM 2. Suppose $C, G \in L^1[0, \infty)$. Then for any bounded solution x(t) of (2), there exists an integer sequence $n_j \to \infty$ as $j \to \infty$ such that $x(t+n_jT)$ converges to a solution of (1) on $(-\infty, +\infty)$ and the convergence is uniform on any compact subset of $(-\infty, +\infty)$.

THEOREM 3. If $C, G, Z, \dot{Z} \in L^1[0, \infty)$, then (1) has a T-periodic solution $g(t) + \int_{-\infty}^{t} \dot{Z}(t-s) g(s) ds + \int_{-\infty}^{t} Z(t-s) f(s) ds$, and all solutions of (1) defined for $t \ge 0$ with bounded continuous functions on $(-\infty, 0]$ as their initial values tend to this T-periodic solution as $t \to \infty$.

Proof. $Z, \dot{Z} \in L^1[0, \infty)$ implies that $\lim_{t \to \infty} Z(t) = 0$. Therefore by (4) all solutions of (2) are bounded. On the other hand,

$$x(t+n_{j}T) = Z(t+n_{j}T)[x(0) - g(0)] + g(t) + \int_{0}^{t+n_{j}T} \dot{Z}(t+n_{j}T-s) g(s) ds$$

$$+ \int_{0}^{t+n_{j}T} Z(t+n_{j}T-s) f(s) ds$$

$$= Z(t+n_{j}T)[x(0) - g(0)] + g(t) + \int_{-n_{j}T}^{t} \dot{Z}(t-s) g(s) ds$$

$$+ \int_{-n_{j}T}^{t} Z(t-s) f(t) ds$$

$$\to g(t) + \int_{0}^{t} \dot{Z}(t-s) g(s) ds + \int_{0}^{t} Z(t-s) f(s) ds, \text{ as } j \to \infty.$$

By Theorem 2, $g(t) + \int_{-\infty}^{t} \dot{Z}(t-s) g(s) ds + \int_{-\infty}^{t} Z(t-s) f(s) ds$ is a solution of (1). Obviously, it is T-periodic.

Suppose x(t) is a solution of (1) defined for $t \ge 0$ with initial value

 $x_0 = \varphi$, where φ is a continuous bounded R^n -valued function defined on $(-\infty, 0]$. Then from

$$\frac{d}{dt} \left[x(t) - \int_0^t C(t-s) \, x(s) \, ds - g(t) - \int_{-\infty}^0 C(t-s) \, \varphi(s) \, ds \right]$$

$$= Ax(t) + \int_0^t G(t-s) \, x(s) \, ds + \int_{-\infty}^0 G(t-s) \, \varphi(s) \, ds + f(t)$$

and by Theorem 1, we get

$$x(t) = Z(t) \left[x(0) - \int_{-\infty}^{0} C(-s) \varphi(s) ds - g(0) \right] + g(t)$$

$$+ \int_{-\infty}^{0} C(t-s) \varphi(s) ds$$

$$+ \int_{0}^{t} \dot{Z}(t-s) \left[g(s) + \int_{-\infty}^{0} C(s-u) \varphi(u) du \right] ds$$

$$+ \int_{0}^{t} Z(t-s) \left[f(s) + \int_{-\infty}^{0} G(s-u) \varphi(u) du \right] ds.$$

The boundedness of φ and $C \in L^1[0, \infty)$ imply $\int_{-\infty}^0 C(-s) \varphi(s) ds$ is a bounded real number, $\int_{-\infty}^0 C(t-s) \varphi(s) ds = \int_t^{+\infty} C(u) \varphi(t-u) du \to 0$, $\int_{-\infty}^t G(t-s) \varphi(s) ds = \int_t^{+\infty} G(u) \varphi(t-u) du \to 0$ as $t \to \infty$. These show

$$\int_0^t \dot{Z}(t-s) \int_{-\infty}^0 C(s-u) \, \varphi(u) \, du \, ds \to 0$$

and

$$\int_0^t Z(t-s) \int_{-\infty}^0 G(s-u) \, \varphi(u) \, du \, ds \to 0 \quad \text{as} \quad t \to \infty.$$

On the other hand,

$$\int_{-\infty}^{0} \dot{Z}(t-s) \ g(s) \ ds \leqslant \int_{t}^{+\infty} |\dot{Z}(v)| \ dv \cdot \max_{0 \leqslant s \leqslant T} |g(s)| \to 0$$

$$\int_{-\infty}^{0} Z(t-s) \ f(s) \ ds \leqslant \int_{t}^{+\infty} |Z(v)| \ dv \cdot \max_{0 \leqslant s \leqslant T} |f(s)| \to 0$$

as $t \to \infty$. Therefore,

$$x(t) - g(t) - \int_{-\infty}^{t} \dot{Z}(t-s) g(s) ds - \int_{-\infty}^{t} Z(t-s) f(s) ds \to 0$$
 as $t \to \infty$.

This completes the proof.

So the key to prove the existence of a unique globally stable T-periodic solution for (1) is to verify Z and $\dot{Z} \in L^1[0, \infty)$. In the remainder of this paper, we shall give some sufficient conditions ensuring them.

LEMMA 1. If $\int_0^{+\infty} |C(t)| dt < 1$, then $\lim_{t \to \infty} [Z(t) - \int_0^t C(t-s)] Z(s) ds = 0$ implies $\lim_{t \to \infty} Z(t) = 0$.

Proof. The continuity of Z(t) and $\lim_{t\to\infty} [Z(t) - \int_0^t C(t-s) Z(s) ds] = 0$ imply the existence of a constant N > 1 such that $|Z(t) - \int_0^t C(t-s), |Z(s)| ds | \leq N$. If there is a $u \geq 0$ with $|Z(u)| = \max_{0 \leq s \leq u} |Z(s)|$, then

$$|Z(u)| \le \int_0^u |C(u-s)| |Z(s)| ds + N$$

$$\le \int_0^{+\infty} |C(s)| ds |Z(u)| + N$$

and thus

$$|Z(u)| \leq N / \left[1 - \int_0^{+\infty} |C(s)| ds\right] = M.$$

This shows that $|Z(t)| \le M$ for $t \ge 0$. For any $\varepsilon > 0$ choose h sufficiently large so that

$$|D(t)| + \int_{h}^{+\infty} |C(s)| ds M < \varepsilon$$
 for $t \ge h$,

where $D(t) = Z(t) - \int_0^t C(t-s) Z(s) ds$. Therefore for $t \ge h$, we have

$$|Z(t)| \le \int_{t-h}^{t} |C(t-s)| |Z(s)| ds + \int_{0}^{t-h} |C(t-s)| dsM + |D(t)|$$

$$\le \varepsilon + \int_{0}^{+\infty} |C(t)| dt \cdot \max_{t-h \le s \le t} |Z(s)|.$$

Choose $t_n \in I_n = [nh, (n+1)h]$ so that $|Z(t_n)| = \max_{t \in I_n} |Z(t)|$, then

$$|Z(t_n)| \leq \begin{cases} \varepsilon + \int_0^{+\infty} |C(t)| \ dt \ |Z(t_{n-1})|, & \text{if there exists } u \in [t_n - h, nh] \\ \text{with } |Z(u)| = \max_{t \in [t_n - h, t_n]} |Z(t)| \end{cases}$$

$$\varepsilon + \int_0^{+\infty} |C(t)| \ dt \ |Z(t_n)|, & \text{if } \max_{s \in [t_n - h, t_n]} |Z(s)| \\ = \max_{s \in [nh, t_n]} |Z(s)|.$$

Therefore if $|Z(t_{n-1})| \le \varepsilon/[1-\int_0^{+\infty}|C(t)|] dt$, then $|Z(t_n)| \le \varepsilon/[1-\int_0^{+\infty}|C(t)|] dt$, and thus $|Z(t_k)| \le \varepsilon/[1-\int_0^{+\infty}|C(t)|] dt$ for all $k \ge n-1$, and if $|Z(t_n)| > \varepsilon/[1-\int_0^{+\infty}|C(t)|] dt$, then $|Z(t_n)| \le \varepsilon+\int_0^{+\infty}|C(t)|] dt$ $|Z(t_{n-1})|$. This implies that either there exists a positive integer K such that $|Z(t)| \le \varepsilon/[1-\int_0^{+\infty}|C(t)|] dt$ for $t \ge Kh$ or $|Z(t_n)| \le \varepsilon+\int_0^{+\infty}|C(t)|| dt$ $|Z(t_{n-1})|$ for $n = 1, 2, \ldots$. If the latter case occurs, then

$$|Z(t_n)| \leq \varepsilon \left[1 + \int_0^{+\infty} |C(t)| dt + \dots + \left(\int_0^{+\infty} |C(t)| dt \right)^n \right]$$

$$+ \left(\int_0^{+\infty} |C(t)| dt \right)^{n+1} |Z(t_0)|$$

$$\leq \varepsilon / \left[1 - \int_0^{+\infty} |C(t)| \right] dt + \left(\int_0^{+\infty} |C(t)| dt \right)^{n+1} M.$$

Therefore these two cases imply $\lim_{t\to\infty} Z(t) = 0$, since ε is sufficiently small. This completes the proof.

LEMMA 2. If $\int_0^{+\infty} |C(t)| dt < 1$ and $G \in L^1[0, \infty)$ then $Z(t) - \int_0^t C(t-s) Z(s) ds \in L^1[0, \infty)$ implies $Z, \dot{Z} \in L^1[0, \infty)$.

Proof. Let $D(t) = Z(t) - \int_0^t C(t-s) Z(s) ds$. Then Z(t) is a fixed point of the mapping T defined by $(TZ)(t) = \int_0^t C(t-s) Z(s) ds + D(t)$ for $Z \in L^1[0, \infty)$. It is easy to verify that T maps $L^1[0, \infty)$ into itself with

$$\int_0^{+\infty} |(TZ - T\tilde{Z})(t)| dt$$

$$= \int_0^{+\infty} \int_0^t |C(t - s)| |[Z(s) - \tilde{Z}(s)]| ds dt$$

$$\leq \int_0^{+\infty} |C(t)| dt \int_0^{+\infty} |Z(t) - \tilde{Z}(t)| dt \quad \text{for } Z, \tilde{Z} \in L^1[0, \infty),$$

that is, T is a contraction mapping from $L^1[0, \infty)$ into itself. Therefore T has a unique fixed point in $L^1[0, \infty)$, that is, $Z \in L^1[0, \infty)$. Z is continuously differentiable, so (3) is equivalent to

$$Z'(t) = \int_0^t C(s) \ Z'(t-s) \ ds + C(t) + AZ(t) + \int_0^t G(t-s) \ Z(s) \ ds.$$

Using the same argument as above we get $Z' \in L^1[0, \infty)$. This completes the proof.

For the case where (3) is a scalar equation, we have

THEOREM 4. Suppose that $\int_0^{+\infty} |C(t)| dt < 1$,

$$\frac{\int_0^{+\infty} |AC(t) + G(t)| dt}{1 - \int_0^{+\infty} |C(t)| dt} + A = \alpha < 0.$$

Then $Z, \dot{Z}, D \in L^1[0, \infty)$, $\lim_{t \to \infty} Z(t) = 0$, $\lim_{t \to \infty} D(t) = 0$, where $D(t) = Z(t) - \int_0^t C(t-s) Z(s) ds$.

Proof. Let

$$F(t) = |AC(t) + G(t)| + \left(\int_0^{+\infty} |AC(t) + G(t)| \ dt / \left(1 - \int_0^{+\infty} |C(t)| \ dt \right) \right) |C(t)|$$

and

$$V(t, Z_t) = \left| Z(t) - \int_0^t C(t-s) Z(s) \, ds \right| + \int_0^t \int_t^{+\infty} F(u-s) \, du \, |x(s)| \, ds.$$

Rewriting (3) as

$$\frac{d}{dt} \left[Z(t) - \int_0^t C(t-s) Z(s) ds \right]$$

$$= A \left[Z(t) - \int_0^t C(t-s) Z(s) ds \right] + \int_0^t \left[AC(t-s) + G(t-s) \right] Z(s) ds,$$

we get

$$\dot{V}(t, Z_{t}) \leq A \left| Z(t) - \int_{0}^{t} C(t-s) Z(s) ds \right|
+ \int_{0}^{t} |AC(t-s) + G(t-s)| |Z(s)| ds
+ \int_{t}^{+\infty} F(u-t) du |Z(t)| - \int_{0}^{t} F(t-s) |Z(s)| ds
\leq A \left| Z(t) - \int_{0}^{t} C(t-s) Z(s) ds \right|
+ \int_{0}^{t} |AC(t-s) + G(t-s)| |Z(s)| ds
+ \int_{0}^{+\infty} F(u) du \left| Z(t) - \int_{0}^{t} C(t-s) Z(s) ds \right|$$

$$+ \int_0^{+\infty} F(u) \, du \int_0^t |C(t-s)| \, |Z(s)| \, ds - \int_0^t F(t-s) \, |Z(s)| \, ds$$

$$\leq \left[\frac{\int_0^{+\infty} |AC(t) + G(t)| \, dt}{1 - \int_0^{+\infty} |C(t)| \, dt} + A \right] \left| Z(t) - \int_0^t C(t-s) \, Z(s) \, ds \right|.$$

Therefore

$$0 \leqslant V(t, Z_t) \leqslant V(0, Z_0) - \alpha \int_0^t |D(s)| \ ds,$$

which implies $\int_0^{+\infty} |D(s)| ds \le (1/\alpha) V(0, Z_0)$. That is, $D \in L^1[0, \infty)$, and thus $Z, Z' \in L^1[0, \infty)$ by Lemma 2, which implies $\lim_{t \to \infty} Z(t) = 0$ and $\lim_{t \to \infty} D(t) = 0$. This completes the proof.

For the general n-dimensional equation (3), we have

THEOREM 5. Suppose that A is a stable matrix, B is a positive definite $n \times n$ matrix with $A^TB + BA = -I$, and α , β are positive constants with $\alpha^2 x^T x \leq x^T B x \leq \beta^2 x^T x$. If $\int_0^{+\infty} |C(t)| dt < 1$,

$$\frac{\int_0^{+\infty} |BAC(t) + BG(t)| dt}{\alpha \left[1 - \int_0^{+\infty} |C(t)| dt\right]} < \frac{1}{2\beta},$$

then $Z, \dot{Z}, D \in L^1[0, \infty)$, $\lim_{t \to \infty} D(t) = 0$ and $\lim_{t \to \infty} Z(t) = 0$, where $D(t) = Z(t) - \int_0^t C(t-s) Z(s) ds$.

Proof. Let

$$K(t) = \frac{\int_0^{+\infty} |BAC(t) + BG(t)| dt}{\alpha [1 - \int_0^{+\infty} |C(t)| dt]} |C(t)| + \frac{1}{\alpha} |BAC(t) + BG(t)|$$

and

$$V(t, x_t) = \left\{ \left[x(t) - \int_0^t C(t-s) \ x(s) \ ds \right]^T B \left[x(t) - \int_0^t C(t-s) \ x(s) \ ds \right] \right\}^{1/2} + \int_0^t \int_0^\infty K(u-s) \ du \ |x(s)| \ ds,$$

where x(t) is a solution of

$$\frac{d}{dt}\left[x(t) - \int_0^t C(t-s) \ x(s) \ ds\right] = Ax(t) + \int_0^t G(t-s) \ x(s) \ ds.$$

Then

$$V(t, x_t)$$

$$= \frac{[Ax(t) + \int_0^t G(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]}{2\{(x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]\}^{1/2}}$$

$$+ \frac{[x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) + \int_0^t G(t-s) x(s) ds]}{2[\{x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]\}^{1/2}}$$

$$+ \int_t^{+\infty} K(u-t) du \left| x(t) \right| - \int_0^t K(t-s) \left| x(s) \right| ds$$

$$= \frac{-[x(t) - \int_0^t C(t-s) x(s) ds]^T [x(t) - \int_0^t C(t-s) x(s) ds]}{2\{[x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]\}^{1/2}}$$

$$+ \frac{[x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]^{1/2}}{\{[x(t) - \int_0^t C(t-s) x(s) ds]^T B[x(t) - \int_0^t C(t-s) x(s) ds]\}^{1/2}}$$

$$+ \int_0^{+\infty} K(u) du \left| x(t) - \int_0^t C(t-s) x(s) ds \right|$$

$$+ \int_0^{\infty} K(u) du \int_0^t |C(t-s)| |x(s)| ds - \int_0^{+\infty} K(t-s) |x(s)| ds$$

$$\leq -\left[\frac{1}{2\beta} - \int_0^{+\infty} K(u) du\right] \left| x(t) - \int_0^t C(t-s) x(s) ds \right|$$

$$+ \frac{1}{\alpha} \int_0^t |BAC(t-s) + BG(t-s)| |x(s)| ds - \int_0^t K(t-s) |x(s)| ds$$

$$+ \int_0^{+\infty} K(u) du \int_0^t |C(t-s)| |x(s)| ds - \int_0^t K(t-s) |x(s)| ds$$

$$= -\left[\frac{1}{2\beta} - \frac{\int_0^{+\infty} |BAC(t) + BG(t)| dt}{\alpha[1 - \int_0^{\infty} |C(t)| dt]}\right] \left| x(t) - \int_0^t C(t-s) x(s) ds \right|.$$

The remainder of the proof is the same as that of Theorem 4 and so we leave it to the readers.

Remark. Making a change of variable x(t) = y(t) + k(t), where k(t) is the unique T-periodic solution of the following integral equation

$$k(t) = \int_{-\infty}^{t} C(t - s) k(s) ds + g(t).$$
 (5)

Equation (1) is equivalent to

$$\frac{d}{dt} \left[y(t) - \int_{-\infty}^{t} C(t-s) \ y(s) \ ds \right] = Ay(t) + \int_{-\infty}^{t} G(t-s) \ y(s) \ ds + f^{*}(t)$$
(6)

with

$$f^*(t) = f(t) + Ak(t) + \int_{-\infty}^{t} G(t-s) k(s) ds.$$
 (7)

Therefore, by Theorem 3, (1) has a T-periodic solution

$$k(t) + \int_{-\infty}^{t} Z(t-s) f^*(s) ds$$

provided that $C, G, Z, \dot{Z} \in L^1[0, \infty)$.

REFERENCES

- T. A. Burton, Periodic solution of linear Volterra equations, Funkcial. Ekvac. 27 (1984), 229-253.
- T. A. Burton, Lecture Notes on Periodic Solutions of Volterra Equations, Mathematics 5951, Spring 1984.
- Z.-C. WANG, Periodic solution of linear neutral integrodifferential equations, Tohoku Math. J. 38 (1986), 71-83.
- Z.-C. WANG, J.-H. WU, AND Z.-X. LI, The variation of constants formula and periodicity for linear neutral integrodifferential equations, Funkcial. Ekvac. 29, 2 (1986).
- J.-H. Wu, The local theory for neutral functional differential equations with infinite delay, Acta Math. Appl. Sinica 8 (1985), 427-481.
- Z.-C. WANG AND J.-H. Wu, Neutral functional differential equations with infinite delay, Funkcial. Ekvac. 28 (1985), 157-170.
- 7. R. K. MILLER, "Nonlinear Volterra Integral Equations," Benjamin, New York, 1971.