Neutral Functional Differential Equations with Infinite Delay

By

Wang ZHICHENG and Wu JIANHONG

(Hunan University, China)

This paper discusses the fundamental theory of neutral functional differential equations with infinite delay in the abstract phase spaces given in [1], [6]. Retarded functional differential equations with infinite delay and neutral equations with finite delay discussed by [1]–[3] are included in this class of equations.

In Section 1 we state the axioms for the phase space. Section 2 of this paper gives the definition of neutral functional differential equations with infinite delay and some examples. The main results of Section 3 concern the fundamental theory (existence, uniqueness, continuation of solutions) for this class of equations. In Section 4, we discuss the continuation of solution for a special kind of equations.

§ 1. Axioms for the phase space

Let \hat{B} be a linear real vector sapce of functions mapping $(-\infty, 0]$ into \mathbb{R}^n with elements denoted by $\hat{\varphi}, \hat{\psi} \cdots$, where $\hat{\varphi} = \hat{\psi}$ means $\hat{\varphi}(t) = \hat{\psi}(t)$ for $t \le 0$. Assume that a seminorm $|\cdot|_{\hat{B}}$ is given in \hat{B} so that $B = \hat{B}/_{|\cdot|}$ is a Banach space with the induced norm $|\varphi|_B = |\hat{\varphi}|_{\hat{B}}$ for $\varphi \in B$, $\hat{\varphi} \in \hat{B}$ if $\hat{\varphi} \in \varphi$.

For \hat{x} : $(-\infty, \sigma) \to \mathbb{R}^n$, $t \in (-\infty, \sigma)$, we define \hat{x}_t : $(-\infty, 0] \to \mathbb{R}^n$ by $\hat{x}_t(s) = \hat{x}(t+s)$ for $s \leq 0$. For $\alpha \geq 0$, $t_0 \in \mathbb{R}$ and $\hat{\varphi} \in \hat{B}$, let $\mathscr{F}_{\alpha, t_0}(\hat{\varphi})$ be the set of all functions \hat{x} : $(-\infty, t_0 + \alpha] \to \mathbb{R}^n$ with $\hat{x}_{t_0} = \hat{\varphi}$ and \hat{x} being continuous on $[t_0, t_0 + \alpha]$ (on $[t_0, \infty)$ in case $\alpha = \infty$). Furthermore we put $\mathscr{F}_{\alpha, t_0} = \bigcup_{\hat{\varphi} \in \hat{B}} \mathscr{F}_{\alpha, t_0}(\hat{\varphi})$.

In case $t_0 = 0$ we simply write $\mathscr{F}_{\alpha}(\hat{\varphi})$ and \mathscr{F}_{α} .

The first axiom for the phase space is

 (α_1) $\hat{x}_t \in \hat{B}$ for $\hat{x} \in \mathcal{F}_{\alpha}$ and $t \in [0, \alpha]$.

For $\beta \ge 0$ and $\hat{\varphi} \in \hat{B}$, let $\hat{\varphi}^{\beta}$ denote the restriction of $\hat{\varphi}$ to $(-\infty, -\beta)$. For $\varphi \in B$, define

$$|\varphi|_{\beta} = \inf\{|\hat{\psi}|_{\hat{B}}; \hat{\psi} \in \hat{B} \text{ and } \hat{\psi}^{\beta} = \hat{\varphi}^{\beta} \text{ for some } \hat{\varphi} \in \varphi\}.$$

 $B^{\beta} = B_{|\cdot|_{\beta}}$ is the space of all equivalent classes $\{\varphi\}_{\beta} = \{\psi \in B; |\varphi - \psi|_{\beta} = 0\}$ for $\varphi \in B$ with respect to the seminorm $|\cdot|_{\beta}$. In B^{β} , we define the norm $|\cdot|_{\beta}$ naturally induced by the seminorm $|\cdot|_{\beta}$.

For $\beta \ge 0$ and $\hat{\varphi} \in \hat{B}$, define

$$(\hat{S}_{\beta}\hat{\varphi})(\theta) = \begin{cases} \hat{\varphi}(\beta + \theta), & \theta \in (-\infty, -\beta), \\ \hat{\varphi}(0), & \theta \in [-\beta, 0]. \end{cases}$$

The next axiom for the phase space is

 (α_{2n}) if $|\hat{\varphi} - \hat{\psi}|_{\hat{B}} = 0$, then $|\hat{S}_{\beta}\hat{\varphi} - \hat{S}_{\beta}\hat{\psi}|_{\hat{B}} = 0$.

This axiom justifies the definition of S_{β} given by $S_{\beta}\varphi = \psi$ if $\hat{S}_{\beta}\hat{\varphi} \in \psi$ for $\hat{\varphi} \in \varphi$.

The other axioms are

 (α_{2b}) if $\varphi = \psi$ in B, then $|S_{\beta}\varphi - S_{\beta}\psi|_{\beta} = 0$ for $\beta \ge 0$,

(α_3') there exists a positive constant K such that for any $\hat{\varphi} \in \hat{B}$, $|\hat{\varphi}(0)| \leq K|\hat{\varphi}|_{\hat{B}}$.

The axiom (α_{2b}) justifies the definition of τ_{β} given by $\tau^{\beta}\varphi = \{S_{\beta}\varphi\}_{\beta}$ for $\varphi \in B$, while by the axiom (α'_3) we can put $\varphi(0) = \hat{\varphi}(0)$ for $\hat{\varphi} \in \varphi$, and (α'_3) is equivalent to

 (α_3) there exists a positive constant K such that for any $\varphi \in B$, $|\varphi(0)| \leq K|\varphi|_B$.

The following is a key axiom for us to obtain the fundamental theory of functional differential equations defined in $R \times B$.

- (α'_4) there exist a continuous function $K_1(s)$ and a locally bounded function $M_1(s)$ such that
 - (i) $|\tau^{\beta}\varphi|_{\beta} \leq M_1(\beta)|\varphi|_B$ for $\beta \geq 0$, $\varphi \in B$,
 - (ii) if $\hat{x} \in \mathcal{F}_{\alpha,t_0}$ then for $t \in [t_0, t_0 + \alpha]$, we have

$$|\hat{x}_t|_{\hat{B}} \leq K_1(t-t_0) \sup_{t_0 \leq s \leq t} |\hat{x}(s)| + M_1(t-t_0)|\hat{x}_{t_0}|_{\hat{B}}.$$

We define \hat{z} , $\hat{x} \in \mathcal{F}_{\alpha,t_0}$ to be equivalent, $\hat{z} \sim \hat{x}$, if and only if $|\hat{z}_{t_0} - \hat{x}_{t_0}|_{\hat{B}} = 0$ and $\hat{z}(s) = \hat{x}(s)$ for $s \in [t_0, t_0 + \alpha]$. The equivalent class of $\hat{z} \in \mathcal{F}_{\alpha,t_0}$ under " \sim " is denoted by z. Therefore we define for $\varphi \in B$, $t_0 \in R$ and $\alpha \ge 0$

$$F_{\alpha,t_0}(\varphi) = \{z; \hat{z} \in \mathcal{F}_{\alpha,t_0}(\hat{\varphi}) \text{ for } \hat{z} \in z, \, \hat{\varphi} \in \varphi\}$$

and $F_{\alpha,t_0} = \bigcup_{\varphi \in B} F_{\alpha,t_0}(\varphi)$. Again we write $F_{\alpha}(\varphi)$ and F_{α} in case $t_0 = 0$. For $x \in F_{\alpha,t_0}$, $\hat{x} \in x$ and $t \in [t_0, t_0 + \alpha]$ we can define $x_t = \{\hat{x}_t\}$ by (ii) of (α'_4) , and define $x(t) = \hat{x}(t)$ by the definition of " \sim ".

Then, (α'_4) can be written as

- (α_4) there exist a continuous function $K_1(s)$ and a locally bounded function $M_1(s)$ such that
 - (i) $|\tau^{\beta}\varphi|_{\beta} \leq M_1(\beta)|\varphi|_B$ for $\beta \geq 0$, $\varphi \in B$,
 - (ii) if $x \in F_{\alpha, t_0}$, then for $t \in [t_0, t_0 + \alpha]$, we have

$$|x_t|_B \le K_1(t-t_0) \sup_{t_0 \le s \le t} |x(s)| + M_1(t-t_0)|x_{t_0}|_B.$$

The final axiom is

 (α_5) if $x \in F_{\alpha}$, $\alpha > 0$, then x_t is continuous in $t \in [0, \alpha]$.

§ 2. The definitions of NFDE and some examples

Definition 1. Suppose that Ω is an open set in $\mathbb{R} \times \mathbb{B}$, $D: \Omega \to \mathbb{R}^n$ is continuous, $D(t, \varphi)$ has a continuous Fréchet derivative $D_{\varphi}(t, \varphi)$ with respect to φ on Ω and

(1)
$$D_{\varphi}(t,\varphi)\psi = A(t,\varphi)\psi(0) + L(t,\varphi,\psi)$$

for $(t, \varphi) \in \Omega$, $\psi \in B$. If $A(t, \varphi)$ is an $n \times n$ matrix such that $\det A(t, \varphi) \neq 0$ and $A(t, \varphi)$, $A^{-1}(t, \varphi)$ are continuous, and if $L(t, \varphi, \psi)$ is linear with respect to ψ and satisfies:

(H₁) there are an $\alpha_0 > 0$ and a continuous map $r(t, \varphi, \alpha) : \Omega \times [0, \alpha_0] \to \mathbb{R}^+$, $r(t, \varphi, 0) = 0$, such that for $\psi \in B$ satisfying $|\psi|_{\alpha} = 0$,

$$|L(t,\varphi,\psi)| \leq r(t,\varphi,\alpha)|\psi|_{B},$$

then we say D is generalized atomic at zero on Ω .

Definition 2. Suppose $D, f \in C(\Omega, \mathbb{R}^n)$ and that D is generalized atomic at zero on Ω . Then we say

(3)
$$\frac{d}{dt}D(t,x_t) = f(t,x_t)$$

is a neutral functional differential equation with infinite delay (hereafter called NFDE (D, f, Ω)).

By a solution of (3) we mean an $x \in F_{A,\sigma}$ for some A > 0 and $-\infty < \sigma < +\infty$ such that

- (i) $(t, x_t) \in \Omega$ for $t \in [\sigma, \sigma + A]$,
- (ii) $D(t, x_t)$ is continuously differentiable and satisfies (3) on $[\sigma, \sigma + A]$. If, in addition, $x_{\sigma} = \varphi$, then we say x is a solution of (3) through (σ, φ) and we denote it by $x(t; \sigma, \varphi)$.

Example 1. Suppose $k: (-\infty, 0] \rightarrow (0, \infty)$ is continuous, nondecreasing, integrable on $(-\infty, 0)$ and such that $k(u+v) \le k(u)k(v)$. B_k^1 represents the set of classes of equivalent maps from $(-\infty, 0)$ into \mathbb{R}^n such that they are strongly measurable on $(-\infty, 0]$ and continuous on [-r, 0], r > 0, and

$$|\varphi| = \sup_{u \in [-r,0]} |\varphi(u)| + \int_{-\infty}^{-r} k(u) |\varphi(u)| du < +\infty.$$

By [4], the dual space $(B_k^1)^*$ consists of all ψ ; $(-\infty, 0] \rightarrow \mathbb{R}^n$ such that the restriction of ψ to $(-\infty, -r)$ belongs to $L^{\infty}((-\infty, -r), \mathbb{R}^n)$, while the restriction to [-r, 0] is of bounded variation, left continuous on (-r, 0) and $\psi(0) = 0$. The duality paring between $\varphi \in B_k^1$ and $\psi \in (B_k^1)^*$ is given by

$$\langle \psi, \varphi \rangle = \int_{-\infty}^{-r} \psi(u)\varphi(u)k(u)du + \int_{-r}^{0} [d\psi(u)]\varphi(u)$$

with $\psi \varphi$ and $[d\psi]\varphi$ standing for scalar products in the Euclidean space.

So, if $D: B_k^1 \to \mathbb{R}^n$ is a bounded linear functional, then there exists $\eta_D: (-\infty, 0] \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, a matrix whose columns are in $(B_k^1)^*$ such that

$$D\varphi = \int_{-\infty}^{-r} k(s) \eta_D(s) \varphi(s) ds + \int_{-r}^{0} [d\eta_D(s)] \varphi(s).$$

Therefore, D induces a bounded linear map $D^r: C([-r, 0], \mathbb{R}^n) \rightarrow \mathbb{R}^n$:

$$D^r \varphi = \int_{-r}^0 [d\eta_D(s)] \varphi(s) \qquad \text{for } \varphi \in C([-r, \ 0], \mathbf{R}^n).$$

If D^r : $C([-r, 0], \mathbb{R}^n) \to \mathbb{R}^n$ is atomic at zero (see [2], [3]) (i.e., $A = \eta_D(0) - \eta_D(0-)$ is nonsingular and $\text{Var}_{[-s,0]} \overline{\eta}_D \to 0$ as $s \to 0$, where

$$\bar{\eta}_D(s) = \begin{cases} \eta_D(s), & -r \le s < 0 \\ \eta_D(0-) & s = 0 \end{cases}$$

then $(d/dt)D(x_t) = f(t, x_t)$ is a NFDE.

Example 2.
$$C_{\infty}^{r} = \{ \varphi \in C((-\infty, 0], \mathbb{R}^{n}); e^{r\theta} \varphi(\theta) \rightarrow \text{const. as } \theta \rightarrow -\infty \},$$

$$|\varphi|_{C_{\infty}^{r}} = \sup_{\theta < 0} e^{r\theta} |\varphi(\theta)| \quad \text{for } \varphi \in C_{\infty}^{r}.$$

Suppose $D_{\varphi}(t,\varphi)\psi = L_1(t,\varphi, {}_r\psi) + L_2(t,\varphi, {}^r\psi)$ for some constant r > 0, where $L_1(t,\varphi,\psi)$, $L_2(t,\varphi,\psi)$: $\Omega \times C^r_{\infty} \to \mathbb{R}^n$ are bounded linear functionals with respect to ψ and

$${}_{r}\psi(s) = \begin{cases} \psi(s), & s < -r \\ \psi(-r), & -r \le s \le 0, \end{cases}$$

$${}^{r}\psi(s) = \begin{cases} \psi(-r)e^{-r(s+r)}, & s < -r \\ \psi(s), & -r \le s \le 0. \end{cases}$$

For $\psi^*C([-r, 0], \mathbb{R}^n)$, define ${}^r\psi^* \in C^r_{\infty}$ as

$$^{r}\psi^{*}(s) = \begin{cases} \psi^{*}(s), & -r \leq s \leq 0 \\ \psi^{*}(-r)e^{-r(s+r)}, & s < -r, \end{cases}$$

and define $L_2^*(t, \varphi, \psi^*) = L_2(t, \varphi, {}^r\psi^*)$. Since $L_2(t, \varphi, \psi)$ is a bounded linear functional with respect to ψ , there exists a constant $K(t, \varphi)$ such that

$$|L_2(t, \varphi, \psi)| \leq K(t, \varphi) |\psi|_{C^T}$$
 for $\psi \in C_\infty^T$,

and hence

$$\begin{aligned} |L_{2}^{*}(t, \varphi, \psi^{*})| &\leq K(t, \varphi)|^{r} \psi^{*}|_{C_{\infty}^{r}} \\ &\leq K(t, \varphi) \max \left\{ |\psi^{*}(-r)| e^{-rr}, \sup_{-r \leq s \leq 0} |\psi^{*}(s) e^{rs}| \right\} \\ &\leq K(t, \varphi) \max \left\{ e^{-rr}, 1 \right\} \sup_{-r \leq s \leq 0} |\psi^{*}(s)|. \end{aligned}$$

This means $L_2^*(t, \varphi, \psi^*)$ is a bounded linear functional with respect to $\psi^* \in C([-r, 0], \mathbb{R}^n)$. Therefore there exists a matrix $\eta(t, \varphi, s)$ with elements of bounded variation in $s \in [-r, 0]$ such that

$$L_2^*(t, \varphi, \psi^*) = \int_{-r}^0 d_s \eta(t, \varphi, s) \psi^*(s),$$

and hence

$$D_{\varphi}(t, \varphi, \psi) = L_1(t, \varphi, {}_r\psi) + \int_{-r}^0 d_s \eta(t, \varphi, s) \psi(s).$$

Define $A(t, \varphi) = \eta(t, \varphi, 0) - \eta(t, \varphi, 0^-)$, $r(t, \varphi, \alpha) = \operatorname{Var}_{s \in [-\alpha, 0]} \eta^*(t, \varphi, s)$, where $\eta^*(t, \varphi, s)$ is identical to $\eta(t, \varphi, s)$ on [-r, 0] and $\eta^*(t, \varphi, 0) = \eta(t, \varphi, 0^-)$. If A, r satisfy the conditions in Definition 1, then $(d/dt)D(t, x_t) = f(t, x_t)$ is a NFDE.

If $D(t, \varphi) = \varphi(0)$ and $f: \Omega \to \mathbb{R}^n$, $\Omega \subseteq \mathbb{R} \times \mathbb{B}$, then we get retarded functional differential equations with infinite delay discussed in [1], [6].

§ 3. The fundamental theory

Theorem 1. Suppose Ω is an open set of $\mathbb{R} \times \mathbb{B}$. Then for any $(\sigma, \varphi) \in \Omega$ there is a solution of NFDE (D, f, Ω) through (σ, φ) .

Proof. For $\alpha > 0$, $\beta > 0$, define $A(\alpha, \beta) = \{z \in C((-\infty, \alpha], \mathbb{R}^n); z(s) = 0, s \le 0, |z(t)| \le \beta, t \in [0, \alpha]\}$. Obviously, $A(\alpha, \beta)$ is a bounded, closed, convex subset of $BC((-\infty, \alpha], \mathbb{R}^n)$ (the space of bounded and continuous functions with the supnorm $\|\cdot\|$).

We define two operators on $A(\alpha, \beta)$:

(4)
$$S: \begin{cases} Sz(t) = 0, & -\infty < t \le 0 \\ A(\sigma + t, \tilde{\varphi}_t)(Sz)(t) = -L(\sigma + t, \tilde{\varphi}_t, z_t) - g(\sigma + t, \tilde{\varphi}_t, z_t) \\ + D(\sigma, \varphi) - D(\sigma + t, \tilde{\varphi}_t), & 0 \le t \le \alpha, \end{cases}$$

and

(5)
$$U: \begin{cases} Uz(t) = 0, & -\infty < t \le 0, \\ A(\sigma + t, \, \tilde{\varphi}_t)(Uz)(t) = \int_0^t f(\sigma + s, \, \tilde{\varphi}_s + z_s) ds, & 0 \le t \le \alpha \end{cases}$$

under (1), where $\tilde{\varphi} \in F_a(\varphi)$ with $\tilde{\varphi}(t) = \varphi(0)$ for t > 0, and

$$(6) g(\sigma, \varphi, \psi) = D(\sigma, \varphi + \psi) - D(\sigma, \varphi) - D_{\varphi}(\sigma, \varphi)\psi.$$

- 1° By (2) and the continuity of f, D, D_{φ} , there are $\beta_0 > 0$ and a positive function $\alpha_1(\beta)$ defined for $0 < \beta < \beta_0$ such that for $0 < \beta < \beta_0$ and $0 < \alpha < \alpha_1(\beta)$, S + U maps $A(\alpha, \beta)$ into itself.
 - 2° S is a contraction on $A(\alpha, \beta)$ for suitable α, β .

By the continuity of D_{φ} , for any $\varepsilon > 0$, there are $\beta(\varepsilon) \in (0, \beta_0)$, $\alpha(\varepsilon) \in (0, \alpha_1(\beta(\varepsilon)))$ such that for $y, z \in A(\alpha(\varepsilon), \beta(\varepsilon))$, $t \in [0, \alpha(\varepsilon)]$,

$$|g(\sigma+t, \tilde{\varphi}_t, z_t)-g(\sigma+t, \tilde{\varphi}_t, y_t)| \leq \varepsilon |z_t-y_t|_B$$

Therefore, for $0 < \beta \le \beta(\varepsilon)$, $0 < \alpha \le \alpha(\varepsilon)$, we have

$$||Sz - Sy||$$

$$\leq \sup_{0 \leq t \leq \alpha} \{|A^{-1}(\sigma + t, \tilde{\varphi}_t)|[|L(\sigma + t, \tilde{\varphi}_t, y_t - z_t)| + |g(\sigma + t, \tilde{\varphi}_t, z_t) - g(\sigma + t, \tilde{\varphi}_t, y_t)|]\}$$

$$\leq \sup_{0 \leq t \leq \alpha} |A^{-1}(\alpha + t, \tilde{\varphi}_t)|[r(\sigma + t, \tilde{\varphi}_t, t) + \varepsilon]|z_t - y_t|_B$$

$$\leq \sup_{0 \leq t \leq \alpha} |A^{-1}(\sigma + t, \tilde{\varphi}_t)|K_1(t)[r(\sigma + t, \tilde{\varphi}_t, t) + \varepsilon]||z - y||.$$

Therefore, for a constant $k \in (0, 1)$, there are $0 < \beta_2 < \beta_0$ and a function $\alpha_2(\beta)$ defined on $[0, \beta_2]$, $\alpha_2(\beta) < \alpha_1(\beta)$ such that for $0 < \beta < \beta_2$, $0 < \alpha < \alpha_2(\beta)$, $z, y \in A(\alpha, \beta)$, we have

$$||Sz-Sy|| \le k||z-y||$$
.

3° *U* is completely continuous on $A(\alpha, \beta)$ for $0 < \beta < \beta_2$, $0 < \alpha < \alpha_2(\beta)$. For any $B \subseteq A(\alpha, \beta)$, $z \in B$, $0 \le t$, $\tau \le \alpha$,

$$|Uz(t)-Uz(\tau)|$$

$$\leq \left|A^{-1}(\sigma+t,\tilde{\varphi}_{t})\int_{0}^{t}f(\sigma+s,\tilde{\varphi}_{s}+z_{s})ds-A^{-1}(\sigma+\tau,\tilde{\varphi}_{\tau})\int_{0}^{\tau}f(\sigma+s,\tilde{\varphi}_{s}+z_{s})ds\right|$$

$$\leq \left|A^{-1}(\sigma+t,\tilde{\varphi}_{t})\int_{\tau}^{t}f(\sigma+s,\tilde{\varphi}_{s}+z_{s})ds\right|+|A^{-1}(\sigma+t,\tilde{\varphi}_{t})-A^{-1}(\sigma+\tau,\tilde{\varphi}_{\tau})|$$

$$\times \left|\int_{0}^{\tau}f(\sigma+s,\tilde{\varphi}_{s}+z_{s})ds\right|$$

$$\leq N|t-\tau|+N|A^{-1}(\sigma+t,\tilde{\varphi}_{t})-A^{-1}(\sigma+\tau,\tilde{\varphi}_{\tau})|,$$

where N is a positive constant (by the continuity of A^{-1} and f, for sufficiently small α , β , we can find such an N). So, UB is uniformly bounded and equicontinuous, and hence UB is precompact by Ascoli's theorem. This implies U is completely continuous on $A(\alpha, \beta)$.

Obviously, by 2°, 3°, S+U is an α -contraction on $A(\alpha, \beta)$. By Darbo's theorem (refer to Theorem 6.3 [2, p. 98]), S+U has a fixed point.

Since

$$A(\sigma+t, \tilde{\varphi}_t)(Sz+Uz)(t)$$

$$= \int_0^t f(\sigma+s, \tilde{\varphi}_s+z_s)ds + D(\sigma, \varphi) - D(\sigma+t, \tilde{\varphi}_t+z_t) + A(\sigma+t, \tilde{\varphi}_t)z(t),$$

the integral equation

$$\begin{cases} D(\sigma+t, \, \tilde{\varphi}_t+z_t) - D(\sigma, \, \varphi) = \int_0^t f(\sigma+s, \, z_s+\tilde{\varphi}_s) ds \\ z_0 = 0 \end{cases}$$

has a continuous solution. This implies there is a solution of (3) through (σ, φ) .

Theorem 2. If there is a constant L>0 such that $|f(t,\varphi)-f(t,\psi)| \le L|\varphi-\psi|_B$ for (t,φ) , $(t,\psi) \in \Omega$, then for any $(\sigma,\varphi) \in \Omega$, there is a unique solution of (3) through (σ,φ) .

Proof. It is sufficient to prove S+U has a unique fixed point in $A(\alpha, \beta)$. Suppose there are $z_1, z_2 \in A(\alpha, \beta)$ such that $z_i = (S+U)z_i$ (i=1, 2). Then by 2° , we have

$$\sup_{0 \le s \le t} |Sz_1(s) - Sz_2(s)| \le k \sup_{0 \le s \le t} |z_1(s) - z_2(s)|$$

and

$$\begin{aligned} |Uz_{1}(t)-Uz_{2}(t)| &\leq |A^{-1}(\sigma+t,\tilde{\varphi}_{t})| \left| \int_{0}^{t} \left[f(\sigma+s,\tilde{\varphi}_{s}+z_{1s}) - f(\sigma+s,\tilde{\varphi}_{s}+z_{2s}) \right] ds \right| \\ &\leq |A^{-1}(\sigma+t,\tilde{\varphi}_{t})| L \int_{0}^{t} |z_{1s}-z_{2s}|_{B} ds \\ &\leq |A^{-1}(\sigma+t,\tilde{\varphi}_{t})| L \int_{0}^{t} K_{1}(s) \sup_{0 \leq \theta \leq s} |z_{1}(\theta)-z_{2}(\theta)| ds \\ &\leq L L_{1} \int_{0}^{t} \sup_{0 \leq \theta \leq s} |z_{1}(\theta)-z_{2}(\theta)| ds, \end{aligned}$$

where $L_1 = \sup_{0 \le t \le \alpha} |A^{-1}(\sigma + t, \tilde{\varphi}_t)| \sup_{0 \le t \le \alpha} K_1(t)$. Putting $m(t) = \sup_{0 \le s \le t} |z_1(s) - z_2(s)|$, we have

$$m(t) \leq km(t) + LL_1 \int_0^t m(s) ds$$
,

and

$$m(t) \leq \frac{LL_1}{1-k} \int_0^t m(s) \, ds.$$

By Gronwall's inequality, m(t)=0 for $0 \le t \le \alpha$. Therefore, $z_1=z_2$.

Theorem 3. Consider a NFDE(D, f, Ω), and suppose that for any closed and bounded set W with an $O(W, \delta) \subseteq \Omega$, f maps W into a bounded set in \mathbb{R}^n , $D(t, \varphi)$,

 $D_{\varphi}(t, \varphi)$ are uniformly continuous on W, and there are constants $s_0 > 0$, N > 0 and continuous functions r(s), $N_1(s)$ on $[0, s_0]$ with r(0) = 0 such that

$$|A^{-1}(t,\varphi)| \leq N$$
, $|L(t,\varphi,\psi)| \leq r(s) |\psi|_{r-s,01} + N_1(s) |\psi|_s$

in (1) if $(t, \varphi) \in W$, $s \in [0, s_0]$, where $O(W, \delta)$ denotes the δ -neighborhood of W,

$$|\varphi|_{\Gamma-s,0} = \inf_{\phi \in \hat{B}} \{ \sup_{-s < \theta < 0} |\hat{\psi}(\theta)|; \psi = \varphi \}$$
 for $\varphi \in B$.

If x is a noncontinuable solution of (3) on $(-\infty, b)$, then for any closed and bounded set W_0 with an $O(W_0, \delta) \subseteq \Omega$ there is a sequence $t_n \rightarrow b^-$ as $n \rightarrow \infty$ such that $(t_n, x_{t_n}) \notin W_0$.

Proof. It is sufficient to prove that there is a $t' \in [\sigma, b)$ such that $(t', x_{t'}) \notin W_0$. We may assume $b < +\infty$. Let $V = \{(t, x_t); t \in [\sigma, b)\}$. Obviously, it is sufficient to prove V can not be a bounded set or does not have a δ -neighborhood in Ω .

Suppose that V is bounded and has a δ -neighborhood in Ω . If x(t) is uniformly continuous on $[\sigma, b]$, then x(t) is continuous on $[\sigma, b]$ by setting $x(b) = \lim_{t \to b^-} x(t)$, and $(t, x_t) \to (b, x_b)$ as $t \to b^-$ by (α_5) , and hence x(t) is continuable beyond b (by Theorem 1), which is a contradiction.

So, x(t) is not uniformly continuous on $[\sigma, b)$. Given $\beta \in (0, \delta)$, for $W = \overline{O(V, \beta)}$, choose $N, r(s), N_1(s), s_0 > 0$ as in the assumption, and choose $0 < s < s_0$ so that

$$|r(s)| < 1/7 N.$$

There are $\varepsilon_0 > 0$, $t_k \in [b-s, b)$, $\Delta_k > 0$, $\Delta_k \to 0$ as $k \to \infty$ such that

(8)
$$|x(t_k)-x(t_k-\Delta_k)| \geq \varepsilon_0 \qquad (k=1, 2, 3, \cdots).$$

Let $s_k = \inf \{t \in [b-s, b); |x(t)-x(t-\Delta_k)| \ge \beta^* \}$, where

(9)
$$K_1^* = \sup_{0 \le s \le b - \sigma} K_1(s), \qquad M_1^* = \sup_{0 \le s \le b - \sigma} M_1(s), \qquad \beta^* = \min \{ \varepsilon_0, \, \beta/4K_1^* \}.$$

By the uniform continuity of x(t) on any closed subset of (σ, b) and the uniform continuity of $D(t, \varphi)$ on $O(V, \beta)$, for any

(10)
$$\varepsilon_1 < \min \left\{ \beta^* / 7N_1(s) N M_1^* K_1^*, \ \beta^*, \ \beta^* / 7N \right\}$$

there exists $\Delta^* > 0$ such that

(11)
$$|x(t') - x(t'')| < \varepsilon_1 \quad \text{for } \sigma \le t' < t'' < t' + \Delta^* \le b - s/2,$$

and

(12)
$$|D(t', \varphi') - D(t'', \varphi')| < \varepsilon_1$$
 for $(t', \varphi'), (t'', \varphi') \in O(V, \beta), |t' - t''| < \Delta^*$.

Choose $n_0 > 0$ such that for $k \ge n_0$,

$$\Delta_k < \min(\Delta^*, s/2),$$

and

(13)
$$M_1^*|x_{\sigma+A_k}-x_{\sigma}|_{B} < \beta/4.$$

Then we have

$$|x_{s_{k}} - x_{s_{k-d_{k}}}|_{B} \leq K_{1}(s_{k} - \Delta_{k} - \sigma) \cdot \sup_{\substack{-(s_{k-d_{k-\sigma}}) \leq \theta \leq 0}} |x(s_{k} + \theta) - x(s_{k} - \Delta_{k} + \theta)| \\ + M_{1}(s_{k} - \Delta_{k} - \sigma)|x_{\sigma+d_{k}} - x_{\sigma}|_{B} \\ \leq K_{1}^{*}\beta^{*} + \beta/4 \leq \beta/2$$

and

$$|L(s_{k}, x_{s_{k}}, x_{s_{k}} - x_{s_{k}-d_{k}})|$$

$$\leq r(s)|x_{s_{k}} - x_{s_{k}-d_{k}}|_{[-s,0]} + N_{1}(s)|x_{s_{k}} - x_{s_{k}-d_{k}}|_{s}$$

$$\leq r(s) \sup_{-s \leq \theta \leq 0} |x(s_{k}+\theta) - x(s_{k}-d_{k}+\theta)| + N_{1}(s)|\tau^{s}(x_{s_{k}-s} - x_{s_{k}-d_{k}-s})|_{s}$$

$$\leq r(s) \sup_{-s \leq \theta \leq 0} |x(s_{k}+\theta) - x(s_{k}-d_{k}+\theta)| + N_{1}(s)M_{1}(s)|x_{s_{k}-s} - x_{s_{k}-d_{k}-s}|_{B}$$

$$\leq \beta^{*}/7N + N_{1}(s)M_{1}(s)K_{1}(s_{k}-d_{k}-s-\sigma) \sup_{\sigma \leq \theta \leq s_{k}-d_{k}-s} |x(d_{k}+\theta) - x(\theta)|$$

$$+N_{1}(s)M_{1}(s)M_{1}(s_{k}-s-d_{k}-\sigma)|x_{d_{k}+\sigma}-x_{\sigma}|_{B}$$

$$\leq \beta^{*}/7N + N_{1}(s)M_{1}^{*}K_{1}^{*}\varepsilon_{1} + N_{1}(s)M_{1}^{*2}|x_{\sigma+d_{k}}-x_{\sigma}|_{B}.$$

By the uniform continuity of D_{φ} on $\overline{O(V,\beta)}$ and (14), there is a nonnegative continuous function $\Sigma(\beta)$, $\Sigma(0)=0$, such that

(16)
$$|g(s_{k}, x_{s_{k}}, x_{s_{k}-d_{k}}-x_{s_{k}})| \leq \Sigma(\beta)|x_{s_{k}}-x_{s_{k}-d_{k}}|_{B} \leq \Sigma(\beta)K_{1}^{*}\beta^{*}+\Sigma(\beta)M_{1}^{*}|x_{\sigma+d_{k}}-x_{\sigma}|_{B}.$$

Since

$$\begin{split} D(s_k, x_{s_k}) - D(s_k - \Delta_k, x_{s_k - \Delta_k}) \\ = D(s_k, x_{s_k - \Delta_k}) - D(s_k - \Delta_k, x_{s_k - \Delta_k}) - A(s_k, x_{s_k}) [x(s_k - \Delta_k) - x(s_k)] \\ - L(s_k, x_{s_k}, x_{s_k - \Delta_k} - x_{s_k}) - g(s_k, x_{s_k}, x_{s_k - \Delta_k} - x_{s_k}), \end{split}$$

we have by (10), (12), (15), (16),

$$|x(s_{k})-x(s_{k}-\Delta_{k})| \leq N[|L(s_{k},x_{s_{k}},x_{s_{k}-\Delta_{k}}-x_{s_{k}})|+|g(s_{k},x_{s_{k}},x_{s_{k}-\Delta_{k}}-x_{s_{k}})| + |D(s_{k},x_{s_{k}-\Delta_{k}})-D(s_{k}-\Delta_{k},x_{s_{k}-\Delta_{k}})|+|D(s_{k},x_{s_{k}})-D(s_{k}-\Delta_{k},x_{s_{k}-\Delta_{k}})|] \\ \leq N[\beta^{*}/7N+N_{1}(s)M_{1}^{*}K_{1}^{*}\varepsilon_{1}+N_{1}(s)M_{1}^{*2}|x_{\sigma+\Delta_{k}}-x_{\sigma}|_{B}+\Sigma(\beta)K_{1}^{*}\beta^{*} \\ + \Sigma(\beta)M_{1}^{*}|x_{\sigma+\Delta_{k}}-x_{\sigma}|_{B}+\varepsilon_{1}+M^{0}\Delta_{k}]$$

for $k \ge n_0$, where $M^0 = \sup_{(t,\varphi) \in V} |f(t,\varphi)|$.

Choosing $n_1 > 0$, $\beta_0^* > 0$ so that for any $k \ge n_1$, $\beta \le \beta_0^*$,

$$\begin{split} & \Sigma(\beta) K_1^* < 1/7 \, N, \\ & \Sigma(\beta) M_1^* | x_{\sigma + d_k} - x_{\sigma}|_B < \beta^* / 7 \, N, \\ & M^0 \Delta_k < \beta^* / 7 \, N, \quad N_1(s) M_1^{*2} | x_{\sigma + d_k} - x_{\sigma}|_B < \beta^* / 7 \, N. \end{split}$$

We have for $k \ge \max(n_0, n_1)$, $0 < \beta < \beta_0^*$,

$$|x(s_k)-x(s_k-\Delta_k)| < \beta^*$$

which is contrary to the definition of s_k . This implies V can not be a bounded set with a neighborhood in Ω . The theorem is completely proved.

Lemma 1. Suppose that Γ is a closed, bounded, convex set of a Banach space, that Λ^* is a subset of another Banach space and that T = S + U: $\Gamma \times \Lambda^* \to \Gamma$ satisfies the following hypotheses:

- (i) for some $\lambda_0 \in \Lambda^*$ the equation $x = T(x, \lambda_0)$ has a unique solution $x(\lambda_0)$ in Γ ,
- (ii) $U(x, \lambda)$ is continuous in $(x, \lambda) \in \Gamma \times \Lambda^*$, and for each compact set $\Lambda' \subseteq \Lambda^*$, $U(\Gamma, \Lambda')$ is precompact,
- (iii) $S(\cdot, \lambda)$ is a contraction for each $\lambda \in \Lambda^*$ and $S(x, \lambda)$ is continuous at λ_0 uniformly for $x \in \Gamma$.

Then the solution $x(\lambda)$ of equation $x = T(x, \lambda)$ is continuous at λ_0 .

For the proof, we refer to [2, Chapter 12, Corollary 2.2].

Theorem 4. Suppose Ω is an open set of $\mathbb{R} \times \mathbb{B}$, Λ is a subset of another Banach space X and D, $f: \Omega \times \Lambda \rightarrow \mathbb{R}^n$ satisfies

- (i) $f(t, \varphi, \lambda), D(t, \varphi, \lambda), D_{\varphi}(t, \varphi, \lambda)$ are continuous in $(t, \varphi, \lambda) \in \Omega \times \Lambda$,
- (ii) there are a $\beta_0 > 0$ and a nonnegative continuous function $r(t, \varphi, \beta, \lambda)$ on $\Omega \times [0, \beta_0] \times \Lambda$ such that $r(t, \varphi, 0, \lambda) = 0$ for $(t, \varphi, \lambda) \in \Omega \times \Lambda$, and $D_{\varphi}(t, \varphi, \lambda) \psi = A(t, \varphi, \lambda) \psi(0) + L(t, \varphi, \psi, \lambda)$, where $A(t, \varphi, \lambda)$, $A^{-1}(t, \varphi, \lambda)$ are continuous, and

$$|L(t, \varphi, \psi, \lambda)| \le r(t, \varphi, \beta, \lambda) |\psi|_B$$
 if $\tilde{\psi}(\theta) = 0$ for $\theta \le -\beta_0 < 0$,

(iii) for some $\lambda_0 \in \Lambda$, there is a unique solution of NFDE $(D(\cdot, \lambda_0), f(\cdot, \lambda_0), \Omega)$ through $(\sigma_0, \psi_0) \in \Omega$ which exists on $(-\infty, b]$, $b > \sigma_0$.

Then, there exists a neighborhood $N(\sigma_0, \varphi_0, \lambda_0)$ of $(\sigma_0, \varphi_0, \lambda_0)$ such that for any $(\sigma', \varphi', \lambda') \in N(\sigma_0, \varphi_0, \lambda_0)$, the solution $x(t; \sigma', \varphi', \lambda')$ of $NFDE(D(\cdot, \lambda'), f(\cdot, \lambda'), \Omega)$ through (σ', φ') exists on $(-\infty, b]$ and is continuous in $(t, \sigma', \varphi', \lambda')$ at $(t, \sigma_0, \varphi_0, \lambda_0)$ for $t \in [\sigma', b]$.

Proof. Using the similar method used in the proof of Theorem 1, we can prove that there are $\alpha > 0$, $\beta > 0$, a neighborhood $N(\sigma_0, \varphi_0)$ of (σ_0, φ_0) and a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and a neighborhood (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) and (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) and (σ_0, φ_0) are a neighborhood (σ_0, φ_0) are a neighborhood (σ_0, φ_0) and (σ_0, φ_0) and (σ_0, φ_0)

hood $O(\lambda_0)$ of λ_0 in X such that for $(\sigma', \varphi', \lambda') \in N(\sigma_0, \varphi_0) \times O(\lambda_0)$, $x(t, \sigma', \varphi', \lambda')$ exists on $(-\infty, \sigma + \alpha)$ and $S(\sigma', \varphi', \lambda') + U(\sigma', \varphi', \lambda')$: $A(\alpha, \beta) \rightarrow A(\alpha, \beta)$.

It is easy to prove that for $\Lambda^* = N(\sigma_0, \varphi_0) \times (\Lambda \cap O(\lambda_0))$ and $\Gamma = A(\alpha, \beta)$, all the conditions of Lemma 1 are satisfied. So the solution of NFDE $(D(\cdot, \lambda'), f(\cdot, \lambda'), \Omega)$ through (σ', φ') is continuous at $(\lambda_0, \sigma_0, \varphi_0, t)$ on $[\sigma', \sigma' + \alpha]$.

By the compactness of $\{(t, x_t(\sigma_0, \varphi_0, \lambda_0)); t \in [\sigma_0, b]\}$ we can completely prove the theorem using the finite covering theorem.

§ 4. The continuation of quasi-linear system

Let Ω be an open set in $\mathbb{R} \times \mathbb{B}$, $D, f \in C(\Omega, \mathbb{R}^n)$, $D(t, \varphi) = \varphi(0) - T(t)\varphi$, and let T(t) be a bounded linear operator. If there exist continuous maps $r, N: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^+$ with r(t, 0) = 0 such that for any $(t, \varphi, s) \in \Omega \times \mathbb{R}^+$, $t_0 \in \mathbb{R}$

$$|T(t)\varphi| \leq r(t,s)|\varphi|_{\mathbb{L}^{-s,0}} + N(t,s)|\varphi|_{s},$$

(18)
$$|||T(t)-T(t_0)||| \longrightarrow 0 \text{ as } t \longrightarrow t_0,$$

where $||| \cdot |||$ denotes the operator norm, then we say

(19)
$$\frac{d}{dt}D(t,x_t) = f(t,x_t)$$

is a quasi-linear neutral functional differential equation with infinite delay. We denote (19) by QLNFDE (D, f, Ω) .

The following lemma can be proved by the same way as in [1, Lemma 2.1].

Lemma 2. Let $F_{A,0}^c = \{x \in F_{A,0} : |x(t)| \le C, t \in [0, A]\}$, and let $G \subseteq F_{A,0}^c$. If $A < +\infty$, $\{x_0 : x \in G\}$ is a compact set in B and x(t), $x \in G$, is isequicontinuous in $t \in [0, A]$, then $\Gamma_0 = \{x_t : x \in G, t \in [0, A]\}$ is a compact set in B and $x_t, x \in G$, is equicontinuous in $t \in [0, A]$.

Theorem 5. Suppose that for any $t_0 \in \mathbb{R}$, $\alpha \ge 0$, if a function x defined on $(-\infty, \alpha + t_0)$ with $x_{t_0} \in B$ is continuous on $[t_0, \alpha + t_0)$, and if there exists a sequence $t_k \to (\alpha + t_0)^-$ such that $\sup_k |x_{t_k}|_B < +\infty$, then there is an L(x) > 0 such that $|x(t)| \le L(x)$ for $t \in [t_0, \alpha + t_0)$.

Let x(t) be a noncontinuable solution on $(-\infty, \delta)$ $(\delta > \sigma)$ of QLNFDE (D, f, Ω) through (σ, φ) . Then for any compact set $W \subseteq \Omega$, there is a t_w such that $(t, x_t) \notin W$ for $t_w \le t < \delta$.

Proof. If the conclusion is false, then for some compact set W in Ω , there is a sequence $t_k \rightarrow \delta^-$ such that $(t_k, x_{t_k}) \in W$. Then since W is compact, $\delta < +\infty$ and $|x(t)| \leq L(x) = C$ for $t \in [\sigma, \delta)$, where we note that

$$\sup_{k} |x_{t_k}|_{B} \le M^* \quad \text{for } M^* = \sup\{|\varphi|_{B}; (t, \varphi) \in W \text{ for a } t \in R\},$$

we may assume $(t_k, x_{t_k}) \rightarrow (\delta^-, \varphi) \in W \subseteq \Omega$ and there are $\varepsilon_0 > 0$, M > 0 such that $|f(s, \psi)| \leq M$ for $(s, \psi) \in O(W, \varepsilon_0)$.

If we can prove that x_t converges to the φ as $t \to \delta^-$, then clearly the solution x(t) must be continuable beyond δ , which is contrary to the assumption. So we may assume there is a sequence $t'_k \to \delta^-$ and an $\varepsilon \in (0, \varepsilon_0)$ such that for $k=1, 2, \cdots$, $t_k < t'_k, |x_{t_k} - x_{t_k}|_B = \varepsilon$ and $|x_t - x_{t_k}|_B < \varepsilon$ for $t_k \le t \le t'_k$.

Define x^k : $x^k(t) = x(t+t_k)$ if $t \le t'_k - t_k$, $= x(t'_k)$ if $t > t'_k - t_k$.

Obviously, $x^k \in F_{1,0}^C$. Let $G = \{\overline{\varphi}\} \cup (\bigcup_{k=1}^{\infty} \{x^k\})$, where $\overline{\varphi} \in F_{\infty,0}$ with $\overline{\varphi}(t) = \varphi(0)$ for t > 0. Then $\{x_0; x \in G\} = \{\varphi\} \cup (\bigcup_{k=1}^{\infty} \{x_{t_k}\})$ is compact. We want to prove $x^k(t)$ is equi-continuous in $t \in [0, 1]$. If this is not true, then there exist an $\varepsilon_1 > 0$ and sequences $\{t_{1k}\}, \{t_{2k}\}$ such that $t_{n_k} \leq t_{1k} < t_{2k} < t'_{n_k}, |x(t_{1k}) - x(t_{2k})| \geq \varepsilon_1$, where $\{t_{n_k}\}, \{t'_{n_k}\}$ are subsequences of $\{t_k\}, \{t'_k\}$.

On the other hand

$$\begin{split} |x(t_{1k}) - x(t_{2k})| \\ & \leq \left| \int_{t_{1k}}^{t_{2k}} f(s, x_s) ds \right| + |T(t_{1k}) x_{t_{1k}} - T(t_{2k}) x_{t_{2k}}| \\ & \leq M |t_{1k} - t_{2k}| + |||T(t_{1k}) - T(t_{2k})|||[|x_{t_k}|_B + \varepsilon]| \\ & + r(t_{1k}, s) |x_{t_{1k}} - x_{t_{2k}}|_{[-s, 0]} + N(t_{1k}, s) |x_{t_{1k}} - x_{t_{2k}}|_{s} \\ & \leq M |t_{n_k} - t'_{n_k}| + |||T(t_{1k}) - T(t_{2k})|||(M^* + \varepsilon)| \\ & + r(t_{1k}, s) \sup_{-s \leq \theta \leq 0} |x(t_{1k} + \theta) - x(t_{2k} + \theta)| + N(t_{1k}, s) M_1(s) |x_{t_{1k} - s} - x_{t_{2k} - s}|_B. \end{split}$$

Choose s>0 so that $|r(t,s)|<\varepsilon_1/8C$ for $t\in[\sigma,\delta]$. Since x_t is continuous at $\delta-s$, there exists an $n_0>0$ such that for $k\geq n_0$,

$$\sup_{0 \le t \le \delta} N(t, s) M_1(s) |x_{t_{1k-s}} - x_{t_{2k-s}}|_B < \varepsilon_1/4,$$

$$M|t'_{n_k} - t_{n_k}| < \varepsilon_1/4, \quad |||T(t_{1k}) - T(t_{2k})||| < \varepsilon_1/4(M^* + \varepsilon).$$

So, for $k \ge n_0$, $|x(t_{1k}) - x(t_{2k})| < \varepsilon_1$. This is contrary to the definition of t_{1k} , t_{2k} . Then x^k is equi-continuous in $t \in [0, 1]$ and so by Lemma 2, $|x_0^k - x_{t_k'-t_k}^k|_B = |x_{t_k} - x_{t_k'}|_B \to 0$ as $k \to \infty$. This is also a contradiction.

Theorem 6. Suppose that the phase space satisfies

 (α_6) for any $\alpha > 0$, $t_0 \in \mathbf{R}$ and a function x defined on $(-\infty, \alpha + t_0)$ with $x_{t_0} \in \mathbf{B}$ and x being continuous on $[t_0, \alpha + t_0)$, if there exists a sequence $t_k \to (\alpha + t_0)^-$ such that x_{t_k} converges as $k \to \infty$, then x(t) converges as $t \to (\alpha + t_0)^-$.

Under the same conditions as in Theorem 5, if f maps any bounded closed set of Ω into a bounded set in \mathbb{R}^n , then for any bounded closed set W in Ω , there is a t_w such that $(t, x_t) \notin W$ for $t_w \leq t \leq \delta$.

Proof. We use the similar method as in ([1], Theorem 2.4) to prove the theorem.

If this is not true, that is, there exists $t_k \to \delta^-$ such that $(t_k, x_{t_k}) \in W$, then x(t) is bounded by a constant C_0 on $[\sigma, \delta)$ and $\delta < +\infty$. We prove $\Gamma = \text{Cl}\{(t, x_t); t \in [\sigma, \delta)\}$ is a bounded set in Ω .

If $\Gamma \subseteq \Omega$ but Γ is not bounded, then there exists a sequence $s_k \rightarrow \delta^-$ such that

$$s_{k-1} < t_k < s_k, \quad |x_{s_k}|_B = C \quad \text{and} \quad |x_t|_B < C \quad \text{for } t \in [t_k, s_k)$$
 where
$$C = K_1^* (KC_1 + N_1^* M_1^* + 2C_0) + M_1^* C_1 + 1 + C_1 + K_1^* C_1,$$

$$K_1^* = \sup_{0 \le s \le 1} K_1(s), \qquad M_1^* = \sup_{0 \le s \le 1} M_1(s),$$

$$C_1 = \sup \{ |\varphi|_B; (t, \varphi) \in W \text{ for some } t \in \mathbf{R} \},$$
 and
$$N_1^* = \sup \{ N(t, s); 0 \le t \le \delta, 0 \le s \le 1 \}.$$

Define $\Gamma_0 = \text{Cl}\{(t, x_t); t \in \bigcup_k [t_k, s_k]\} \subseteq \Gamma \subseteq \Omega$, then $|f(t, x_t)|$ is bounded by an M on Γ_0 . Let $\beta_k = s_k - t_k$. From (19) we get

$$\begin{split} |x_{s_k}|_{\mathcal{B}} &\leq K_{\mathbf{1}}(s_k - t_k) \sup_{t_k \leq \theta \leq s_k} |x(\theta)| + M_{\mathbf{1}}(s_k - t_k)|x_{t_k}|_{\mathcal{B}} \\ &\leq K_{\mathbf{1}}(\beta_k)\{|x(t_k)| + M|s_k - t_k| + \sup_{t_k \leq \theta \leq s_k} |T(\theta)x_{\theta} - T(t_k)x_{t_k}|\} + M_{\mathbf{1}}(\beta_k)|x_{t_k}|_{\mathcal{B}} \\ &\leq K_{\mathbf{1}}(\beta_k)\{KC_1 + M|s_k - t_k|\} + K_{\mathbf{1}}(\beta_k)\{\sup_{t_k \leq \theta \leq s_k} |T(\theta) - T(t_k)]x_{t_k}| \\ &\qquad \qquad + \sup_{t_k \leq \theta \leq s_k} |T(\theta)(x_{\theta} - x_{t_k})|\} + M_{\mathbf{1}}(\beta_k)C_1 \\ &\leq K_{\mathbf{1}}(\beta_k)[KC_1 + M(s_k - t_k)] + K_{\mathbf{1}}(\beta_k)\sup_{t_k \leq \theta \leq s_k} ||T(\theta) - T(t_k)|||C_1 \\ &\qquad \qquad + K_{\mathbf{1}}(\beta_k)\sup_{t_k \leq \theta \leq s_k} |r(\theta, s)|x_{\theta} - x_{t_k}|_{[-s, 0]} + N(\theta, s)|x_{\theta} - x_{t_k}|_{s}] + M_{\mathbf{1}}(\beta_k)C_1 \\ &\leq K_{\mathbf{1}}(\beta_k)[KC_1 + M(s_k - t_k)] + K_{\mathbf{1}}(\beta_k)C_1\sup_{t_k \leq \theta \leq s_k} ||T(\theta) - T(t_k)||| \\ &\qquad \qquad + K_{\mathbf{1}}(\beta_k)[2C_0 + \sup_{t_k \leq \theta \leq s_k} N_1^*M_{\mathbf{1}}(s)|x_{\theta - s} - x_{t_k - s}|_{\mathcal{B}}] + M_{\mathbf{1}}(\beta_k)C_1 \end{split}$$

where s is given so that $\sup_{0 < t < s} r(t, s) < 1$.

Choose $n_1 > 0$ so that $|x_{t_k-s} - x_{\theta-s}|_B \le 1$, $\beta_k \le 1$, $t_k - s \ge \sigma$, $|||T(\theta) - T(t_k)||| < 1$, $K_1^* M_1(s_k - t_k) < C_1 + 1$ for $k \ge n_1$, $\theta \in [t_k, s_k]$. Then for $k \ge n_1$, $|x_{s_k}|_B < C$ which yields a contradiction.

Let $\Gamma \nsubseteq \Omega$. Since $\{(t, x_t); t \in [\sigma, \delta)\} \subseteq \Omega$, there exists a sequence $(\sigma_k, x_{\sigma_k}) \to (\delta, \varphi)$ as $k \to \infty$, $(\delta, \varphi) \in \Gamma \cap \partial \Omega$. By (α_{δ}) , x has a continuous extension beyond δ . So, Γ is compact and therefore for the compact set $W_0 = W \cap \Gamma$ in Ω , there is a t_{w_0} such that $(t, x_t) \notin W_0$ for $t \in [t_{w_0}, \delta)$ by Theorem 5. This implies $(t, x_t) \notin W$ for $t \in [t_{w_0}, \delta)$. This contradicts the existence of the sequence $\{t_k\}$.

So, if the conclusion of the theorem is not true, then Γ is a bounded closed set

in Ω , we can prove x(t) is uniformly continuous on $[\sigma, \delta)$ by the method used in the proof of Theorem 3. Therefore Γ is a compact set in Ω . Repeating the same argument as above yields a contradiction. This proves completely the theorem.

Acknowledgement. The authors are grateful to Professor F. Kappel for his helpful discussion and to referee for his careful reading of this paper and making a number of helpful suggestions.

References

- [1] Hale, J. K. and Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
- [2] Hale, J. K., Theory of Functional Differential Equations, Applied Math. Sciences, Vol. 3, Spring-Verlag, 1977.
- [3] Hale, J. K., Forward and backward continuation for neutral functional differential equations, J. Differential Equations, 9 (1971), 168-181.
- [4] Stech, H. W., On the adjoint theory of autonomous linear functional differential equations with unbounded delays, J. Differential Equations, 27 (1978), 421–443.
- [5] Corduneanu, C. and Lakshmikantham, V., Equations with unbounded delay: A survey, Nonlinear Analysis, Theory, Method and Application, Vol. 4, No. 5, (1980), 831–877.
- [6] Kappel, F. and Schappacher, W., Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations, 37 (1980), 142-183.
- [7] Sawano, K., Some considerations on the fundamental theorems for functional differential equations with infinite delay, Funkcial. Ekvac., 25 (1982), 97-104.

nuna adreso:
Department of mathematics
Hunan University
Changsha, Hunan 1801
The People's Republic of China

(Ricevita la 21-an de decembro, 1983) (Reviziita la 14-an de julio, 1984) (Reviziita la 4-an de oktobro, 1984) (Reviziita la 11-an de januaro, 1985)