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Neutral Functional Differential Equations with Infinite Delay

By
Wang ZHICHENG and Wu JIANHONG

(Hunan University, China)

This paper discusses the fundamental theory of neutral functional differential
equations with infinite delay in the abstract phase spaces given in [1], [6]. Retarded
functional differential equations with infinite delay and neutral equations with finite
delay discussed by [1]-[3] are included in this class of equations.

In Section 1 we state the axioms for the phase space. Section 2 of this paper
gives the definition of neutral functional differential equations with infinite delay
and some examples. The main results of Section 3 concern the fundamental theory
(existence, uniqueness, continuation of solutions) for this class of equations. In
Section 4, we discuss the continuation of solution for a special kind of equations.

§1. Axioms for the phase space

Let B be a linear real vector sapce of functions mapping (— oo, 0] into R* with
elements denoted by ¢, - --, where o=+ means ¢(¢)=1(t) for t<0. Assume
that a seminorm |-|; is given in B so that B=8/,., is a Banach space with the
induced norm |o|,=|¢|; for o € B, p € B if ¢ € o.

For £: (—o0,0)—R", te(— o0, 0), we define £,: (—oo0,0]—=R" by £,(s)=
£(t+s5) for s<0. For a>0, t,¢ R and ¢ € B, let &, ,(¢) be the set of all functions
%: (—o0, t, +a]—R" with £,,)=¢ and £ being continuous on [¢t,, #,+a] (on [¢,, o)
in case @ =co). Furthermore we put %, ,;=Uses F a,1o(®)-

In case t,=0 we simply write & (¢) and Z,.

The first axiom for the phase space is

() £, eBforteF,andte]0,al

For >0 and ¢ e B, let ¢¢ denote the restriction of ¢ to (—oo, —p). For
¢ € B, define

l|s=inf {|4|s; ¥ € B and §#=g¢* for some ¢ € ¢}.

Bf=B,.,, is the space of all equivalent classes {¢},={y- € B; [p—+|;=0} for p e B
with respect to the seminorm |- |,. In B#, we define the norm | - |, naturally induced
by the seminorm |- |;. -

For p>0and ¢ B, define
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. HB+0), 0 (—oo, —p)
S)0) =
(S50)(0) {93(0), 6e[—50]

The next axiom for the phase space is

(@) if [p—F15=0, then [S;p—Sp|5=0. )

This axiom justifies the definition of S, given by Sy,p=1) if S;¢ € 4 for ¢ € ¢.

The other axioms are

(az) if =1 in B, then |S,p— S, |,=0 for >0,

(o) there exists a positive constant K such that for any ¢ e B, |#(0)|<K|d|s-

The axiom (a,,) justifies the definition of z, given by zfp={S,¢}, for ¢ ¢ B,
while by the axiom (a;) we can put ¢(0)=¢(0) for ¢ e ¢, and («3) is equivalent to

(a;) there exists a positive constant K such that for any ¢ € B, |¢p(0)|<K|¢|s.

The following is a key axiom for us to obtain the fundamental theory of func-
tional differential equations defined in R X B.

() there exist a continuous function K,(s) and a locally bounded function
M (s) such that

(i) Iefpl,<Mi(B)lpls for B0, p < B,

(i) if Xe #,,, then for ¢ €[4, t,+«a], we have

let lééKl(Z_to) zsilsgt |)€(S)I+M1(t—to)|7€'tol§-

We define 7, £ € #, ,, to be equivalent, 7 ~%, if and only if |Z,,—X, |3=0 and
2(s)=Z%(s) for s € [t,, t,+]. The equivalent class of 7 € &, ;, under “~" is denoted
by z. Therefore we define for p € B, f, € R and « >0

F, . (p)={z;2e F,,(p) for ez ¢c o}

and F, ;,=,en F.,..(¢). Again we write F,(¢) and F, in case ,=0. Forxe F,,,
% exand e [t, t,+a] we can define x,={%,} by (ii) of (), and define x(z)=%(¢)
by the definition of “~".

Then, («}) can be written as

(a,) there exist a continuous function K(s) and a locally bounded function
M (s) such that

() [Pol,<M(P)|pls for >0, ¢ € B,

@) ifxeF,,, then for ¢ € [¢, t,+«], we have

|x, IBéKl(t_tO)tSiEz [x(s)]+Mx(t_to)|xto!B~

The final axiom is
(a;) if x e F,, «>0, then x, is continuous in ¢ ¢ [0, a].
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§ 2. The definitions of NFDE and some examples

Definition 1. Suppose that 2 is an open set in RX B, D: 2— R" is continuous,
D(t, ¢) has a continuous Fréchet derivative D,(t, ¢) with respect to ¢ on 2 and’

) D,(t, p)yr=A(t, ) (0)+ L(2, @, )

for (t,p) e 2,4 e B. If A(t, ) is an nXn matrix such that det A(z, 9)#0 and
A(t, ), A™(t, ) are continuous, and if L(Z, ¢, y) is linear with respect to «p» and
satisfies:

(H, there are an ao>0 and a continuous map r(t, ¢, @): 2 X[0, a]>R*,
r(t, ¢, 0)=0, such that for «» ¢ B satisfying ||, =0,

@ |L(t, @, ) |<r (2, 0, @) ls,
then we say D is generalized atomic at zero on 2.

Definition 2. Suppose D, fe C(2, R") and that D is generalized atomic at zero
on £2. Then we say

3) —"’—D(t, xX)=flt, x)

is a neutral functional dlﬂerentlal equation with . mﬁmte delay (hereafter called
NFDE (D, f, 2)). :

By a solution of (3) we mean an x ¢ F,, for some 4>0 and —oco<og<{+o0
such that : ‘

(i) (t,x)effortels, o+ 4],

(i) D(t, x,) is continuously differentiable and satisfies (3) on [o, o+ A4].
If, in addition, x, =g, then we say x is a solutlon of (3) through (o, ¢) and we denote
it by x(¢; o, ¢).

Example 1. Suppose k: (— o0, 0]—(0, o0) is continuous, nondecreasing, inte-
grable on (—oo, 0) and such that k(u+v)<k(uwk(v). B} represents the set of
classes of equivalent maps from (— oo, 0) into R* such that they are strongly
measurable on (— oo, 0] and continuous on [—r, 0], r >0, and

lol=_sop _1p)|+[ " kG)|ptw)|du< +co.

By [4], the dual space (B})* consists of all +; (— oo, 0]—>R" such that the
restriction of » to (— oo, —r) belongs to L*((— o0, —r), R™), while the restriction
to [—r, 0] is of bounded variation, left continuous on (—r, 0) and (0)=0. The
duality paring between ¢ € B} and + € (B})* is given by
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o> = pkdn+ [ 1dw@lpw

with ¢ and [d+]p standing for scalar products in the Euclidean space.
So, if D: B;—R" is a bounded linear functional, then there exists 7,: (— oo, 0]
—Z(R", R*), a matrix whose columns are in (B%)* such that

Do=["" kisypu(s)e(s)ds+ [ Ldnse)pts).
Theréfore, D induces a bounded linear map D": C([—r, 0], R*)—R":
Do=[ lny@lpls)  forge CQ—r, 0L, RY).
If D": C([—r, 0], R")—>R” is atomic at zero (see [2], [3]) (i.e., 4=%(0)—7,(0—) is
nonsingular and Var;_; ,;7,—0 as s—0, where

3 (S)__{rh,(s), —r<<s<0
P s 0—)  s=0),

then (d/dt)D(x,)= f(t, x,) is a NFDE.
Example 2. C7,={p e C((— o0, 0], R"); e"*¢(f)—>const. as 6— — oo},
|pler,=sup e”[p(6)]  for pe CT.
6<0

Suppose D, (1, o) =L,(t, ¢, &)+ Ly(t, ¢, ") for some constant r >0, where
L(t, ¢, V), L(t, ¢, ¥): 2 X CT,—R" are bounded linear functionals with respect to
and

. ‘tb‘(s)’ s —r

W) _{«p(—r), —r<s<0,

. B y(—r)e 1 g —r

V)= {«Ir(S), —r<s<0.

For ¢*C([—r, 0], R™), define "* e C7, as
PH(s), —r<s<0

[k 3 —

¥ (S)_{\!,\*(—r)e_"'(“”, s< —r,

and define LF(z, o, ¥*)=Ly(t, ¢, "*). Since Ly, ¢, 1) is a bounded linear func-
tional with respect to +, there exists a constant K(?, ¢) such that

|L(t, 0, W) <K( @)Wl for e CL,
and hence
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| L¥(2, @, v*) | <K(2, ©)| "t
<K(t, 9) max {|4*(—=r)le”, sup |y*(s)e[}

<K(t, ¢) max {e=, 1} sup [¥*(s)].
-r<s<0

This means L(z, ¢, ¥*) is a bounded linear functional with respect to * € C([—r, 0],
R*). Therefore there exists a matrix 7(Z, ¢, s) with elements of bounded variation
in s € [—r, 0] such that

LE g 4= dat. o, 0%,

and hence
Dy(t, . =Lt p. )+ _dintt, o, )0(6),

Define A(z, )=1(¢, ¢, 0)—1(t, ¢, 07), r(t, ¢, ®)=Var,c_. ;7% ¢, 5), where
7*(, @, s) is identical to 5(f, ¢, s) on [—r, 0] and 7*(¢, ¢, 0)=7(t, ©,07). If A, r
satisfy the conditions in Definition 1, then (d/dt)D(t, x,)= f(t, x,) is a NFDE.

If D(t, 9)=¢(0) and f: 2—R", 2R X B, then we get retarded functional
differential equations with infinite delay discussed in [1], [6].

§ 3. The fundamental theory

Theorem 1. Suppose £ is an open set of RX B. Then for any (o, ¢) € 2 there
is a solution of NFDE (D, f, Q) through (g, ¢).

Proof. For a>0, >0, define A(a, f)={z e C((— oo, al, R"); z(s)=0, s<0,
|z(t)| <B, t [0, a]}. Obviously, A(«a, f) is a bounded, closed, convex subset of
BC((— o0, a], R*) (the space of bounded and continuous functions with the sup-
norm ||+)).

We define two operators on A(a, B):

(4) ) {Sz(t)=0, — o0 <t<0
’ A(G+t, ¢t)(SZ)(t): —L(O'—l—t, ¢29 Zt)—g(6+ f, ¢t9 Zt)
+D(0', ?)_D(o'—}—ta ¢L)> Ogtga:

and

Uz(t)=0, — oo <1t L0,
(5) U: { ¢ '

A(o+1, gbt)(Uz)(t):J flots, ¢, +z)ds, 0<i<a

0

under (1), where ¢ € F,(¢) with ¢(t)=¢(0) for ¢ >0, and
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(6) g(e, ¢, ¥)=D(a, p+)—D(a, )—D,(a, o)y

1° By (2) and the continuity of f, D, D,, there are §,>0 and a positive func-
tion «,(B) defined for 0<<B<S, such that for 0<<8< B, and 0<a<ay(B), S+ U maps
A(a, p) into itself.

2° Sis a contraction on A(«, p) for suitable «, .

By the continuity of D,, for any ¢>>0, there are f(e) € (0, 5,), a(e) € (0, a,(5(e)))
such that for y, z € A(a(e), B(e)), € [0, a(e)],

lg(a+1, Gir 2) —8(0+1, &p, ¥ |<elz,— V5.
Therefore, for 0< < B(e), 0<a<al(e), we have
| Sz—Syll

SOZ?P {[A_1(0+ 1, sz)][lL(o"I‘ 1, &is y,—zt)l—i—]g(a—l— t, @, Zt)_g(o""t, Brs yt)l]}
< sup A e+, g)|[r(a+1, & t)+ellz.—Veln

< sup |4~ (e+t, @) | Ki()[r(o+1, @,y 1) Felllz—]l.

Therefore, for a constant k e (0, 1), there are 0<8,<< 5, and a function a,(p) de-
fined on [0, B.], a.(B) <a,(B) such that for 0 B< B, 0 e <<ay(B), 2,y € A(e, B), we have

|Sz—Sy||<k|z—y].

3° U is completely continuous on A(e, 8) for 0<< < B, 0<a<a(p).
For any BC A(e, B), z € B, 0<t, t<a,

| Uz(6)— Uz(z)|

t J ’ T
< ‘A“(o‘—i—t, ) J S+, @t 2)ds— A7 047, 6) L F(@5, By42,)ds

< IA“(o+t, &) I flo+s, g+2z)ds|+ A (a+t, ¢)— A (o+7, &)

X lJ‘;f(O.—I_S, ¢s+Zs)dS
<N|t—z|+N|A o+, ¢)—A (o +7, &),

where N is a positive constant (by the continuity of 4~* and f, for sufficiently small
a, B, we can find such an N). So, UB is uniformly bounded and equicontinuous,
and hence UB is precompact by Ascoli’s theorem. This implies U is completely
continuous on A(«, p).

Obviously, by 2°, 3°, S+ U is an a-contraction on A(«, f). By Darbo’s theo-
rem (refer to Theorem 6.3 [2, p. 98]), S+ U has a fixed point.

Since
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A(e+1, )(Sz+ Uz)(t)
=f:f (o-+s5, @,+2)ds+ D(a, ) —D(o+1, ¢, +2)+ A(c+1, 3,)z(1),

the integral equation

t
{D<o.+ t, ¢ut2)=D(o, 9)=| flo-+s, 2,4 p)ds

z,=0
has a continuous solution. This implies there is a solution of (3) through (g, ¢).

Theorem 2. If there is a constant L>0 such that | f(t, o)— f(t, ¥)|<Llo—|s
Jor (t, ), (t, V) € 2, then for any (o, ¢) € 2, there is a unique solution of (3) through

(o, ).

Proof. 1t is sufficient to prove S+ U has a unique fixed point in A(«, p).
Suppose there are z,, z, € A(w, f) such that z,=(S+ U)z, (i=1, 2). Then by 2°, we
have '

sup |Sz,(s) — Sz(s) | <k Sup |2,(s) — zo(5)|
and

| Uzi(t)— Uz(0) |<| 4o +1, $1)]|

[ fots 20— s +5, 6,4 20ds
<|A-Y(o+1, ¢t)1Lj: |22y — 2o | s
<l47o+4,0)IL [ Kis) sup |7,0)—z(0)]ds
,
<IL, L sup |2(0)—z(0)|ds,

where Ly =sup,.,<.| A7 (041, ¢,)| SUPy<;<a Ki(?).
Putting m(t) =supy.,.. | z:(s) — z,(s)|, we have

m(t)<km(t)+ LL, J: m(s)ds,

and

m(t) < IL_Z_’}C J: m(s)ds.

By Gronwall’s inequality, m(t)=0 for 0<z<<w. Therefore, z,=2z,.

Theorem 3. Consider a NFDE(D, f, 2), and suppose that for any closed and
bounded set W with an O(W,8)ZQ, f maps W into a bounded set in R, D(z, ©),
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D,(t, ) are uniformly continuous on W, and there are constants s,>0, N >0 and con-
tinuous functions r(s), Ny(s) on [0, s;] with r(0)=0 such that

|47 QI<N, L, o, WSOV l-s + NS |,

in (1) if ¢, ) € W, s €0, s,], where O(W, 3) denotes the d-neighborhood of W,

|S0|[—s,0]=inf¢e§ {Sup—sgogol‘ﬁ(ﬁ)l; Y=} Jor ¢ e B.

If x is a noncontinuable solution of (3) on (— oo, b), then for any closed and bounded
set W, with an O(W,, 8) =82 there is a sequence t,—b~ as n—oo such that (t,, x,,) ¢
W,.

Proof. 1t is sufficient to prove that there is a ¢’ € [g, b) such that (¢/, x,) ¢ W,.
We may assume b<< +oco. Let V={(t, x,); t € [0, b)}. Obviously, it is sufficient to
prove ¥V can not be a bounded set or does not have a §-neighborhood in 2.

Suppose that V is bounded and has a d-neighborhood in 2. If x(¢) is uniformly
continuous on [e, b), then x(z) is continuous on [g, ] by setting x(b)=lim,_,_ x(),
and (¢, x,)—(b, x;) as t—b~ by («;), and hence x(¢) is continuable beyond b (by
Theorem 1), which is a contradiction.

So, x(¢) is not uniformly continuous on [g, b). Given ¢ (0, §), for W=0(V, p),
choose N, r(s), Ny(s), 5,>0 as in the assumption, and choose 0<s< s, so that

@) ' |r(s)|<1/7N.
There are ¢, >0, t, € [b—s, b), 4,>0, 4,—0 as k— oo such that
®) |x(t:) — x(t,— 4) | > ¢, k=1,2,3, ---).

Let s,=inf {t e [b—s, b); | x(¢t) —x(t — 4,)| > p*}, where

©) K¥= sup Ks), M¥= sup Mys), B*=min {¢,, f/4K}}.

0<s<b~0 0<s<b—o

By the uniform continuity of x(z) on any closed subset of (¢, ) and the uniform
continuity of D(¢, ¢) on O(V, p), for any

(10) e <min {§*/TN,(s)NM K}, B*, B*/TIN}

there exists 4% >0 such that

(11) |x(t)—x(@")|<e for o<t'<t"<t'+4*<b—s/2,
and

(12) D@, ¢)—=D(", ¢)|[<er ~ for (t',¢), ", ¢) e OV, B), [t/—1t"|<d*.
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Choose n,>0 such that for k>n,,
4, <min (4%, 5/2),
and
(13) ME|x, 40— X, |5 p/4.
Then we have

| X, — Xop— a1 |8 < Ki($, — 41, —0) - sup | x(s¢+60)—x(s, — 41+ 0)]

—(Sx—dr—0)<6<0
(14) +M1(Sk—dk—0')|xa+4k—xa|3
<KFB*+p/4A< B2

and
IL(SIH xska xsk—xsk—dk)l
gr(‘s‘)]xsk—xsk—dk l[—s,O]+Nl(S)|xsk_xsk—dkls
Sr(S) _fllap<0 lx(Sk—*_ﬁ)—x(sk—Ak+0)l+Nl(s)|Ts(xsk—s_xsk-dk—s)ls

(15 <r(s) _SE})SO [x(s54-6) — x(51— 4+ 0) |+ N (S )M ()| Xy s — Xy - s -5 |5
< B*/TN+ N,(s)M(s)K (s, — 4, —5—0) sup | x(d;,+6)—x(6)|

eL0L<sp—d—s
+N1(S)MI(S)M1(Sk_S_Ak_0)|xdk+a—xa |
_<_,8*/7N—|—N1(S)M{kK{"el+NI(S)M{"Z{x,,“,k—x,, |a-

By the uniform continuity of D, on O(V, B) and (14), there is a nonnegative
continuous function 3(8), 2(0)=0, such that

(16) Ig(sk: xsk’ xsk—dk _xSk)|g2(ﬁ)|x8k_x8k—Ak IB
SZ(‘B)KEKAB*_*_Z(‘B)M]}Flxo+4k—xa' B

Since
D(s,, xsk)_D(sk_Aks Xpmty)
= D(sy, xsk—dk)—D(sk_Ak’ xsk~dk)_A(sks xsk)[x(sk_Ak)—x(Sk)]

) _L(Ska xsm xsk—Ak_xsk)—g(sk’ KXo xsk-dk_xsk s
we have by (10), (12), (15), (16),

| x(83) —x(s, — 4,) |
KNI L(Sts Xops Xopmti— X0 |18 (Sks Xogo Xop— 2y — X))
| D(Sis Xgp— 1) — DS — ity Xgpw 1) |1 D(S» X)) — D(s3— Ay X, 1) ]
< NI[B*/TN+N(s)M{Kife,+ N(MF|x, o 1, — X, s+ Z(OKFB*
FZBMF Xy sy —X, |z e+ M4,]
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for k>n,, where M°=sup . ,yev | [t ¢)].
Choosing n, >0, 8§ >0 so that for any k>n,, S< 5,

J(BKF<1/TN,
Z(B)Mik Ixa+dk—xo' lB<18*/7N9
M4, <B*[TN, N(s)M3¥*|x,,4,—X,|s<<B*[TN.

We have for k>max (n,, 1n;), 0< < 5,
Ix(sk)—x(sk_dk)|<18*

which is contrary to the definition of 5,. This implies: ¥ can not be a bounded set
with a neighborhood in 2. The theorem is completely proved.

Lemma 1. Suppose that I" is a closed, bounded, convex set of a Banach space,
that A* is a subset of another Banach space and that T=S+U: I' X A*—I" satisfies
the following hypotheses:

(i) for some 2, € A* the equation x="T (x, A,) has a unique solutzon x(A) in I,

(ii) U(x, 2) is continuous in (x, A) € I' X A*, and for each compact set A’ C A*,
U, A’) is precompact,

@iii) S(-,2) is a contraction for each A e A% and S (x, 2) is continuous at 2,
uniformly for x e I'. :

Then the solution x(2) of equation x=T(x, 2) is continuous at 2,. .

For the proof we refer to [2, Chapter 12 Corollary 2. 2]

Theorem 4. Suppose 2 is an open set of R X B, A is a subset of another Banach
space X and D, f: 2 X A—R" satisfies

(i) f(t 9, ), D(t, ¢, 2), D,(t, ¢, 2) are continuous in (¢, ¢, 1) € 2X 4,

(ii) there are a B,>0 and a nonnegative continuous function r(t, ¢, B, A) on
QX[0, BIX A such that r(t,¢,0,)=0 for (t,¢,2) e 2XA, and D,(t, ¢, D=
A(2, @, DU (0)+ L, @, ¥, 2), where A(t, ¢, 2), A~ (t, ¢, A) are continuous, and

|L(t, @ 4, D1 (2, 0, B, D]l i W(O=0 for 6<—F,<0,

(ili) for some 2, € A, there is a unique solution of NFDE (D(-, A,), f(-, 2, £2)
through (o, ) € 2 which exists on (— oo, b], b>a,.

Then, there exists a neighborhood N(a,, gpo, 2) of (¢, o, o) such that for any
(@, ¢, X) € N(ag, @ X)), the solution x(t;d’,¢',2") of NFDE(D(-, ), f(+, %), 2)
through (d’, ¢’) exists on (— oo, b] and is continuous in (t, o', ¢, 2’) at (1, 6,, o, 4) fOr
te[d, b].

Proof. Using the similar method used in the proof of Theorem 1, we can
prove that there are >0, 8>>0, a neighborhood N(a,, ¢,) of (g,, ¢,) and a neighbor-
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hood O(,) of 4, in X such that for (¢’, ¢, 2’) € N(a,, ) X O(4,), x(t, o', ¢, &) exists
on (—oo,o+a) and S(¢’, ¢, )+ U(d’, ¢/, ¥): A(a, B)—A(a, B).

It is easy to prove that for A*=N(a,, ¢,) X (AN O(4,)) and I'= A(a, p), all the
conditions of Lemma 1 are satisfied. So the solution of NFDE (D(-, 1), f(-, 1), 2)
through (¢’, ¢’) is continuous at (2,, g,, ¢y, ¢) on [¢/, ¢’ +c].

By the compactness of {(z, x,(d,, ¢, 4,)); ¢ € [6,, b]} We can completely prove the

theorem using the finite covering theorem.

§ 4. The continuation of quasi-linear system

Let 2 be an open set in RX B, D, f e C(2, R"), D(t, ¢) =¢(0) — T(t)¢, and let
T(¢) be a bounded linear operator. If there exist continuous maps r, N: RX R*—
R* with r(¢, 0)=0 such that for any (¢, ¢, s) e 2 X R*, t,€ R

(17 | T(®e|<r(t; 9)|@l-s0+ N 9ol
(18) WT()—T@)||—>0 as t—>t,
where ||| - || denotes the operator norm, then we say
(19) g_p(t, x)=1(t, x,)

is a quasi-linear neutral functional differential equation with infinite delay. We
denote (19) by QLNFDE (D, £, 2).
The following lemma can be proved by the same way as in [1, Lemma 2.1].

Lemma 2. Let F{,={xe F,,: |x(#)|<C,tel0, A}, and let GZFS, If
A<+ o0, {x,: x e G} is a compact set in B and x(t), x € G, is isequicontinuous in
te [0, 4], then I'y)={x,; x € G, t € [0, A]} is a compact set in B and x,, x € G, is equi-
continuous in t € [0, A].

Theorem 5. Suppose that for any t, e R, «a>0, if a function x defined on (— oo,
a-+t,) with x,, € B is continuous on [t,, a--t,), and if there exists a sequence t,—
(a+1,)™ such that sup,|x,|<< -+ oo, then there is an L(x)>0 such that | x(¢)|< L(x)
Jor t e [t, a+1t,).

Let x(t) be a noncontinuable solution on (— oo, §) (6>0) of QLNFDE (D, f, 2)
through (g, ¢). Then for any compact set W L, there is a t,, such that (t,x,) ¢ W
Jor t,<t<a4.

Proof. 1If the conclusion is false, then for some compact set Win £, there is a
sequence #,—0~ such that (¢, x,) € W. Then since W is compact, 6<< 4 co and
|x(¢)|< L(x)=C for t € [a, §), where we note that
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sup | x,, s < M* for M*=sup {|o|z; (t,p) € Wforate R},
13

we may assume (4, x,)—>(0", ¢) € WL and there are >0, M >0 such that
1£(5, )| < M for (s, ¥) € O, &)

If we can prove that x, converges to the ¢ as t—d~, then clearly the solution
x(¢) must be continuable beyond &, which is contrary to the assumption. So we
may assume there is a sequence ¢;,—d~ and an ¢ e (0, &) such that for k=1,2, - .-,
1, <ths | Xy, — Xy lp=¢ and [x, —x,,[z<e for t<t<t;.

Define x*: x*(t)=x(t+1t,) if t <t,—t;,, =x(t}3) if t >t;,—1,.

Obviously, x* € F¢,. Let G={g}U(Uz-.{x"}), where @ € F,. , with @(z)=¢(0)
for t>0. Then {x,; x € G}={p} U (Us-:{x;,}) is compact. We want to prove x*(z)
is equi-continuous in ¢ ¢ [0, 1]. If this is not true, then there exist an ¢ >0 and
sequences {t,,}, {fzx} such that ¢, <t,,<t,,<t,,, |x(t;z) —X(tz)| >¢;, where {t,.}, {27}
are subsequences of {t.}, {t7}.

On the other hand

Ix(txk)_x(tn)l
1213
I SGs, xs)ds‘ + | T(t) X — T<t2k)xtzk|
<M ty—to] + N T(t1) — T @) |1 X |5 +e]
+r(tlk9 S)]xtm—xtekl[—s,O]—*_N(tlk’ S)Ixtm_xtzkls
SM!%;_ZM‘*‘ ||| T(t,k)—T(tZk)IH(M*—}—e)
+7(t, 5) _SE(P«)|x(t1k+6)“x(t2k+0)|+N(t1k’ S)MI(S)|xt1k—s_xt2k—slB'

<

Choose s>0 so that |r(t,5)|<e/8C for teo,0]. Since x, is continuous at
0 —s, there exists an n, >0 such that for k>n,,
Sup N(ta S)Ml(s)[xtlk—s—xtgk—s]B<51/49

0<t<o

M\t —t,.|<e&/4, || T(t)— T () ||| <eJAM* ).

So, for k>ny, | x(t,,) — x(t,)|<e,. This is contrary to the definition of #,;, ;. Then
x* is equi-continuous in ¢ € [0, 1] and so by Lemma 2, |x§—x},_,.[s=|x,, —x;[s—0
as k—oo. This is also a contradiction.

Theorem 6. Suppose that the phase space satisfies

(a)) for any >0, t, € R and a function x defined on (— oo, aa+1,) with x, € B
and x being continuous on [t,, a+1,), if there exists a sequence t,—(a-1,)~ such that
x,, converges as k—s oo, then x(t) converges as t—(a-+1,)". '

Under the same conditions as in Theorem 5, if f maps any bounded closed set of
£ into a bounded set in R*, then for any bounded closed set W in 2, there is a t,, such
that (t, x,) ¢ W for t,<t<d.
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Proof. We use the similar method as in ([1], Theorem 2.4) to prove the theo-
rem.

If this is not true, that is, there exists #,—d~ such that (¢, x,,) € W, then x(¢) is
bounded by a constant C, on [s, 6) and 6<<+oco. We prove I'=CI{(¢, x,); ¢ € [0, 9)}
is a bounded set in Q2.

If 'S but I' is not bounded, then there exists a sequence s,—0~ such that

where C=K{KC,H+NFfM¥+2C)+M¥C,+1+C,+K¥C,
K= sup K(s), M ¥ = sup M(s),
0<s<1 0<s<1

Ci=sup {|¢|s; (¢, ¢) € W for some ¢ € R},
and N¥=sup {N(t,5); 0<r<3, 0<s<1}.

Define I',=Cl{(z, x,); t € Ui [ts, s ]} SI' S0, then | f(¢, x,)| is bounded by an
Mon I',. LetB,=s,—t,. From (19) we get

Hub K5 t) Sup [x(0) 4 M5, — )%,
<RI - Mlse— 11+ Sup | TOWx,— Tx, )+ Mi(B 5,
< K(BHKC, M5, — -+ KB sup_ITO)—T(1)x,

+ sup [T~ %I} + M(BIC,

lp<0<sg

<K(PIIKC+M(s— 11+ K (8 sup [ITO—-T@IIC,
+K(By) sup [r(8,s)|x,— Xe ][~s,0] +N (@, s) | x4 — Xy |s]+ Ml(ﬁk)c1

tp<0<sg

.gKl(ABk)[KCI+M(Sk”tk)]+Kl(18k)Clt ZEES N TO)— Tl
+Kl(ﬁk)[2co+[ ilalljs Nile(s)lx0—s—xtk—s|B]+Ml(ﬂk)C1

where s is given so that sup,.,., r(¢, s)<<1.

Choose n,>0 so that |x,,_,—x, ,|z<1, B, <1, t,—s>a, || TO)—Tt)<1,
K#M(s,—t,)<C,+1 for k>n,, 0 € [t;, s,). Then for k>n,, |x,,|z<C which yields
a contradiction.

Let I'Z Q. Since {(t, x,); t € [0, 6)} =2, there exists a sequence (o4, X,,)—>(5, @)
as k—coo, (3, ) € 'N32. By (a), x has a continuous extension beyond 8. So, I”
is compact and therefore for the compact set W,=WN I in 2, there is a ¢,, such
that (¢, x,) ¢ W, for ¢ ¢ [t,,,, ) by Theorem 5. This implies (¢, x,) ¢ W for t € [¢,,, 0).
This contradicts the existence of the sequence {7,}.

So, if the conclusion of the theorem is not true, then /" is a bounded closed set
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in £2, we can prove x(¢) is uniformly continuous on [¢, §) by the method used in
the proof of Theorem 3. Therefore I” is a compact set in 2. Repeating the same
argument as above yields a contradiction. This proves completely the theorem.

Acknowledgement. The authors are grateful to Professor F. Kappel for his

helpful discussion and to referee for his careful reading of this paper and making a
number of helpful suggestions.

[1]
[2]
[3]
[4]
[5]
[6]
[7]

References

Hale, J. K. and Kato, J., Phase space for retarded equations with infinite delay, Funkcial.
Ekvac., 21 (1978), 11-41.

Hale, J. K., Theory of Functional Differential Equations, Applied Math. Sciences, Vol.
3, Spring-Verlag, 1977.

Hale, J. K., Forward and backward continuation for neutral functional differential
equations, J. Differential Equations, 9 (1971), 168-181.

Stech, H. W., On the adjoint theory of autonomous linear functional differential equa-
tions with unbounded delays, J. Differential Equations, 27 (1978), 421-443.
Corduneanu, C. and Lakshmikantham, V., Equations with unbounded delay: A survey,
Nonlinear Analysis, Theory, Method and Application, Vol. 4, No. 5, (1980), 831-877.
Kappel, F. and Schappacher, W., Some considerations to the fundamental theory of
infinite delay equations, J. Differential Equations, 37 (1980), 142-183.

Sawano, K., Some considerations on the fundamental theorems for functional differen-
tial equations with infinite delay, Funkcial. Ekvac., 25 (1982), 97-104.

nuna adreso:

Department of mathematics
Hunan University

Changsha, Hunan 1801

The People’s Republic of China

(Ricevita la 21-an de decembro, 1983)
(Reviziita la 14-an de julio, 1984)

(Reviziita la 4-an de oktobro, 1984)
(Reviziita la 11-an de januaro, 1985)



	§1. Axioms for the phase space
	§2. The de finitions of NFDE and some examples
	§3. The fundamental theory
	§4. The continuation of quasi-linear system
	References

